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The network degeneration hypothesis (NDH) of neurodegenerative
syndromes suggests that pathologic brain changes distribute pri-
marily along distinct brain networks, which are characteristic for
different syndromes. Brain changes of neurodegenerative syndromes
can be characterized in vivo by different imaging modalities. Our aim
was to test the hypothesis whether multimodal imaging based on the
NDH separates individual patients with different neurodegenerative
syndromes. Methods: Twenty patients with Alzheimer disease (AD)
and 20 patients with frontotemporal lobar degeneration (behavioral
variant frontotemporal dementia [bvFTD, n 5 11], semantic dementia
[SD, n 5 4], or progressive nonfluent aphasia [PNFA, n 5 5]) under-
went simultaneous MRI and 18F-FDG PET in a hybrid PET/MR scanner.
The 3 outcome measures were voxelwise values of degree centrality as
a surrogate for regional functional connectivity, glucose metabolism as
a surrogate for regional metabolism, and volumetric-based morphom-
etry as a surrogate for regional gray matter volume. Outcomemeasures
were derived from predefined core regions of 4 intrinsic networks
based on the NDH, which have been demonstrated to be characteristic
for AD, bvFTD, SD, and PNFA, respectively. Subsequently, we applied
support vector machine to classify individual patients via combined
imaging measures, and results were evaluated by leave-one-out
cross-validation. Results: On the basis of multimodal voxelwise re-
gional patterns, classification accuracies for separating patients
with different neurodegenerative syndromes were 77.5% for AD
versus others, 82.5% for bvFTD versus others, 97.5% for SD ver-
sus others, and 87.5% for PNFA versus others. Multimodal classi-
fication results were significantly superior to unimodal approaches.
Conclusion: Our finding provides initial evidence that the combina-
tion of regional metabolism, functional connectivity, and gray matter
volume, which were derived from disease characteristic networks,
separates individual patients with different neurodegenerative syn-
dromes. Preliminary results suggest that employing multimodal

imaging guided by the NDH may generate promising biomarkers
of neurodegenerative syndromes.

Key Words: neurodegenerative syndromes; network degeneration
hypothesis; Alzheimer’s disease; frontotemporal lobar degeneration;
hybrid PET/MR

J Nucl Med 2016; 57:410–415
DOI: 10.2967/jnumed.115.165464

Because of the increasing loss of neuronal function and integrity,
neurodegenerative syndromes result in dementia characterized by pro-
gressive cognitive and behavioral dysfunction (1). In line with clinical
variation of distinct dementia syndromes (e.g., sociobehavioral and
language symptoms stand out in frontotemporal lobar degeneration
[FTLD], whereas memory and attention deficits dominate in Alz-
heimer disease [AD]), cumulative evidence suggests that neurodegen-
erative syndromes do not distribute randomly across the brain but
primarily affect specific functional networks, corresponding roughly
with cognitive–behavioral functions (2–5). The network degeneration
hypothesis (NDH) of neurodegenerative syndromes suggests that both
initiation and propagation of pathologic changes are happening pri-
marily along specific brain networks (4,6,7). Intrinsic brain networks
are characterized by coherent ongoing activity at slow frequency
(,0.1 Hz) (8) and have been demonstrated to be candidates for such
network-based pathology spread (4,5,7,9,10). Specifically, NDH sug-
gests that each neurodegenerative disease may start in neuronal pop-
ulations of preferentially targeted intrinsic network and progressively
spread to connected regions within and then outside the network
(4,5,9). Proteins, which are believed to be responsible for disease
pathogenesis such as amyloid-b and tau in AD, are known to disturb
synaptic activity and axonal transport, which lead to a reduction in
brain network integrity (11–14). In particular, it has been demon-
strated that tau proteins may be able to travel across neurons, suggest-
ing the expansion of pathology along connectivity pathways (12,15).
Modern neuroimaging facilitates multimodal in vivo character-

ization of brain changes in neurodegenerative syndromes (16). For
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example, 18F-FDG PET and structural MRI, respectively, detect
regional hypometabolism, which reflects lowered regional neural
activity, and atrophy, which reflects neurodegeneration, and both
procedures are used for individual diagnostics (17–19). Resting-
state functional MRI (rs-fMRI) facilitates the measurement of co-
herent ongoing brain activity, which reflects patterns of intrinsic
functional connectivity including those of intrinsic brain networks
(8,20). Recently, on the basis of these advances in neuroimaging,
several biomarkers have been proposed to differentiate between
various neurodegenerative syndromes in individual patients
(18,19,21–27). However, neuroimaging-based distinction between
neurodegenerative syndromes is a challenge, because valid large-
scale models, which are both available for different syndromes
and informative for macroscopic imaging, are rare (28).
The main question of this study is whether multimodal neuroimag-

ing guided by the NDH can separate individual patients with
different neurodegenerative syndromes. To obtain initial evidence,
we performed a preliminary study, which combines multimodal
imaging on a hybrid PET/MR scanner following concepts of the NDH
and applying canonical multivariate pattern classification. Specifically,
we focused on patients with AD and subtypes of FTLD, namely be-
havioral variant frontotemporal dementia (bvFTD), semantic dementia
(SD), and progressive nonfluent aphasia (PNFA), and correspondingly
core regions of 4 intrinsic networks, which have been previously
linked with these 4 syndromes based on the NDH (4). Patients were
assessed by rs-fMRI, 18F-FDGPET, and structuralMRIwithin 1 imag-
ing session. We measured multimodal properties of network cores in-
cluding intrinsic functional connectivity, regional metabolism, and
gray matter volume. Concretely, for each patient and for each network
core, we calculated degree centrality (DC) as surrogate for intrinsic
functional connectivity, regional 18F-FDG–glucose metabolism (MET)
as surrogate for regional activity, and voxel-based morphometry
(VBM) as surrogate for regional gray matter volume. We hypothesized
that such multimodal properties separate individual patients with dif-
ferent neurodegenerative syndromes. To test this hypothesis, support
vector machine (SVM) was applied to patterns of outcome measures
to estimate classification accuracy of individual patients.

MATERIALS AND METHODS

Patients
Forty patients with dementia due to different neurodegenerative

syndromes (20 AD, 11 bvFTD, 4 SD, 5 PNFA) were included in this
hybrid PET/MR study. A summary of subjects’ demographics and rel-
evant clinical information is listed in Table 1 and the supplemental data
(supplemental materials are available at http://jnm.snmjournals.org).

Data Acquisition and Preprocessing
This study was registered and approved by the medical ethical

board of the Technische Universität Mun̈chen in line with Human
Research Committee guidelines of the Technische Universität Mun̈chen.
Scanning of patients on the hybrid PET/MR scanner and subsequent
imaging data preprocessing followed standard protocols of our center
and have been described previously (details are provided in the supple-
mental data) (29–31).

Definition of Intrinsic Network Cores
On the basis of the NDH, AD, bvFTD, SD, and PNFA are associated

with distinct intrinsic brain networks, which are preferentially affected
in each disorder. It has been demonstrated that core regions of these
networks overlap strikingly with peak atrophy in patients affected by
the respective syndromes (4). We selected 4 core regions of each
network, respectively, according to Seeley et al.: for AD, right angular

gyrus (RAng) of the default mode network with coordinates (52, 258,
36); for bvFTD, right frontoinsular cortex of the salience network with
(35, 24, 5); for SD, left temporal lobe of a temporal pole-anterior
cingulate centered network with (244, 14, 225); and for PNFA, left
inferior frontal gyrus of left lateralized fronto-parietal language
network with (243, 15, 27). We used MarsBaR (http://marsbar.
sourceforge.net) to create 4 spheric regions of interest (ROIs with
10-mm radius) for each coordinate (Fig. 1). Subsequently, measures
for regional functional connectivity, metabolism, and gray matter vol-
ume were extracted from these cores for each patient.

Outcome Measures
DC as Surrogate for Functional Connectivity. DC of functional

connectivity of a given region reflects the sum of all functional
connectivity weights, which are connected to the region (32). We per-
formed calculation of voxelwise DC by canonical procedures as imple-
mented in the REST toolkit (http://www.restfmri.net) (33). Specifically,
for each subject, a whole-brain DC map was obtained by calculating for
each voxel i the sum of Fisher r-to-z normalized Pearson correlation
coefficients zij for all other voxels j of the brain. Subsequently, the
voxelwise DC values and the averaged DC values were extracted from
each of the 4 core regions (RAng, right frontoinsular cortex, left tem-
poral lobe, left inferior frontal gyrus) for each subject.

METas Surrogate for Regional Metabolism. Preprocessed 18F-FDG
PET images were scaled by normalization of whole-brain 18F-FDG uptake
values to cerebellar vermis 18F-FDG uptake (34,35) and were spatially
smoothed using a gaussian kernel full width at half maximum of 12 mm.
Afterward, from 4 core ROIs, we extracted voxelwise MET values from
the normalized 18F-FDG map of each subject. To be consistent with DC,
we extracted the voxelwise and the averaged 18F-FDG uptake values.

VBM as Surrogate for Gray Matter Volumes. To detect gray matter
volume alterations within the 4 network cores, we followed a VBM
protocol described in a previous study (29,36). Briefly, we used the
VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html) to analyze
gray matter volume. T1-weighted images were corrected for bias-field
inhomogeneity; registered using linear (12-parameter affine) and non-
linear transformations; and tissue-classified into gray matter, white
matter, and cerebrospinal fluid within the same generative model. Then,
the resulting gray matter images were modulated to account for volume
changes that result from the normalization process. We considered non-
linear volume changes to control head size differences. Subsequently,
our images were smoothed with a gaussian kernel of 8 mm (full width at
half maximum). To be consistent with DC and MET, we extracted the
voxelwise and averaged VBM values from core ROIs.

Multimodal Outcome Measure. Voxelwise multimodal outcome
measures were created by concatenating unimodal voxelwise mea-
sures, respectively, into corresponding vectors, DC, MET, VBM. vx.
Voxelwise multimodal outcome vectors were of main interest in the
study, because they preserve maximal imaging information.

Classification of Individual Patients
SVM. Canonical SVM was used to classify individual patients

based on their multimodal voxelwise outcome measures. The basic
idea of SVM procedures is to construct a separating hyperplane
between the training instances (outcome measures of interest) of 2
classes (i.e., 2 groups of patients such as patients with AD vs. others)
(details are provided in the supplemental data) (37).

Validation of Classification. Leave-one-out cross-validation was ap-
plied to validate SVM-based classification—that is, for each round of
training, 1 subject was removed from the 2 classes and used for testing
whereas the remaining data were used for training (resulting in 40 rounds
of validation). Across rounds of validation, classification accuracy is then
the percentage of cases that were assigned correctly to the clinical di-
agnosis (18,19,38). The validity of classification was evaluated by the
following measures: accuracy, sensitivity, and specificity.
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Control Analyses
Nonvoxelwise Multimodal Values. To control for the impact of

multimodality and voxelwise account, correspondent averaged or
unimodal outcome vectors were defined. Specifically, to control findings
for information loss due to averaging, , DC, MET, VBM . av was
defined and used for SVM-based classification. In addition, further corre-
spondent unimodal voxelwise/averaged outcome vectors (e.g.,, DC. vx

or , DC . av) were used to control information loss due to ignoring
multimodal aspects of neurodegeneration-induced brain changes.

Classification Analysis Based on Core Region Not Derived from
NDH. To evaluate group-separating power of NDH-based regions
versus non–NDH-based regions, we extracted the voxelwise unimodal
and multimodal values from another ROI not derived from the NDH
(i.e., the right primary motor cortex with coordinates (12, 216, 74)
(39), then we applied SVM to compare the classification results from
this ROI with the above-mentioned core regions.

Statistical Comparison Between Multimodal Voxelwise and Non-
multimodal/Voxelwise Values. To evaluate group-separating power of
multimodal voxelwise versus other approaches, we used the McNemar
test to calculate the statistical significance between voxelwise multimodal
, DC, MET, VBM . vx values and other values (such as unimodal
averaged , DC . vx or , MET . vx or , VBM . vx) (40).

RESULTS

For each neurodegenerative disease and corresponding network
core, SVM together with leave-one-out cross-validation was ap-
plied to voxelwise multimodal outcome measures , DC, MET,
VBM . vx to separate patients of the given disease from those of
other syndromes (Table 2). Classification accuracies were 77.5%
for AD versus others, 82.5% for bvFTD versus others, 97.5% for
SD versus others, and 87.5% for PNFA versus others.
To evaluate the use of multimodal versus unimodal voxelwise out-

come measures, we studied classification results based on unimodal
voxelwise , DC . vx, , MET . vx, and , VBM . vx (Table 2).
Results were as follows: for, DC. vx, 70% for AD versus others,
70% for bvFTD versus others, 77.5% for SD versus others, and
87.5% for PNFA versus others; for , MET . vx, 72.5% for AD
versus others, 60% for bvFTD versus others, 97.5% for SD versus
others, and 85% for PNFA versus others; and for , VBM . vx,
32.5% for AD versus others, 72.5% for bvFTD versus others, 92.5%
for SD versus others, and 82.5% for PNFA versus others. Statistical
comparisons revealed that the voxelwise multimodal classification
results were superior to unimodal approaches in separating individ-
ual patients. In particular, voxelwise multimodal , DC, MET,
VBM . vx accuracies were significantly different compared with

, DC . vx or , MET . vx or , VBM . vx for both AD and
bvFTD groups, compared with, DC. vx or, VBM. vx for the
SD group, and compared with , MET . vx for the PNFA group
(P , 0.05) (Table 2).
To evaluate the use of averaged versus voxelwise multimodal

outcome measures, we assessed classification results based on
averaged multimodal , DC, MET, VBM . av. The accuracy
results based on the averaged values were 72.5% for AD versus
others, 72.5% for bvFTD versus others, 90% for SD versus others,
and 87.5% for PNFA versus others, which were significantly lower
than accuracies for corresponding voxelwise values (P , 0.05),
except for PNFA. In PNFA, the averaged approach demonstrated
already high classification accuracy. These results showed that
averaged multimodal outcomes performed worse than voxelwise
measures in separating individual patients.
To evaluate the impact of NDH-based versus non–NDH-based

ROIs for separating individual patients, the group-separating power
of a ROI outside NDH-based networks of interest was investigated.
Classification results based on the voxelwise multimodal , DC,

TABLE 1
Demographic and Clinical Data of Patients

Characteristic AD (n 5 20) bvFTD (n 5 11) SD (n 5 4) PNFA (n 5 5) P

Age 72.2 (8.7) 61.0 (9.6) 65.7 (6.0) 68.0 (7.9) 0.010*

Sex (male) 13 9 2 1 0.119

Duration of symptom (y) 4.92 (1.9) 6.91 (4.5) 5.50 (3.7) 3.60 (1.5) 0.29

Mini-mental state examination 22.03 (4.61) 23.73 (7.0) 18.75 (12.8) 19.00 (5.92) 0.062

*P value indicates the statistically significant difference between 4 groups using ANOVA.
Group comparisons by ANOVA, except for sex by Kruskal–Wallis test.
AD5 Alzheimer disease; bvFTD5 behavioral variant frontotemporal dementia; SD5 semantic dementia; PNFA5 progressive nonfluent

aphasia.

FIGURE 1. Study flowchart. Main core region of each network was cre-
ated based on previous study (4). Subsequently, voxelwise values and
averaged values of 3 modalities were extracted from each core for all
subjects. Then, SVM was applied to classify each patient. DC 5 degree
centrality; MET 5 glucose metabolism; rs-fMRI 5 resting-state functional
magnetic resonance imaging; sMRI 5 structural magnetic resonance im-
aging; SVM5 support vector machine; VBM5 voxel-based morphometry.
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MET, VBM . vx values from a ROI in the primary motor cortex
were 45% for AD versus others, 60% for bvFTD versus others, 90%
for SD versus others, and 87.5% for PNFAversus others, which were
significantly lower (P , 0.001) than accuracies for corresponding
NDH-based ROIs, except of PNFA.

DISCUSSION

To test whether multimodal imaging based on the brain NDH
might be useful to separate individual patients with different neuro-
degenerative syndromes, we assessed patients with AD, bvFTD, SD,
and PNFA in a hybrid PET/MR scanner. We defined the multimodal
voxelwise outcome measure, DC, MET, VBM. vx, which reflects
regional degree centrality of functional connectivity, metabolism of
regional activity, and voxel-based morphometry of gray matter vol-
ume. On the basis of core regions of 4 intrinsic brain networks, which
are specific for patients’ syndromes, , DC, MET, VBM . vx clas-
sified individual patients accurately for their diagnostic category.
These preliminary results demonstrate that combining advanced
multimodal neuroimaging with distinct network-based degenera-
tion patterns separates individual patients of different neurodegen-
erative syndromes.
We found that , DC, MET, VBM . vx separated individual pa-

tients with AD, bvFTD, SD, or PNFA, respectively, with classifi-
cation accuracy ranging from 77.5% to 97.5% (Table 2). , DC,
MET, VBM . vx was defined as a concatenated vector based on 3
unimodal outcome measures (e.g., , DC . vx) (Fig. 1). Unimodal
outcome measures, in turn, were derived from standard procedures of
unimodal imaging data analysis. Critically, , DC, MET, VBM . vx

was restricted to regions, which were derived from disease-specific

intrinsic networks derived from the NDH (4,6). To be independent
from the current sample and to avoid circular analysis, exact co-
ordinates of core regions were derived from a previous study (4).
Recent findings provided overwhelming evidence that distinct in-
trinsic brain networks are primarily affected by different neurode-
generative syndromes (4,5,7). More specifically, several findings
suggest that critical proteins of neurodegeneration such as tau
spread in a prionlike transsynaptic way along brain networks
(12,13,15). Our finding of network core–based classification of in-
dividual patients with different neurodegenerative syndromes sup-
ports such an NDH; but beyond regional information, one should
note that used imaging-based information of these cores is not
specific to any of the neurodegenerative disorders, especially
those with similar underlying pathologies.

Classification Accuracies

Classification accuracies for different syndromes range from 77.5%
to 97.5% (Table 2). These accuracies are comparable with or superior
to those of similar studies. For example, a previous study applied
VBM and diffusion tensor imaging (DTI) to separate FTLD subtypes
(i.e., bvFTD, SD, and PNFA) from healthy controls. The authors
revealed that DTI measurement, particularly radial diffusivity, pro-
vided better accuracies (67.6%–81.4%) than gray matter atrophy
(45.7%–65.7%) or white matter atrophy (47.4%–59.2%) (41). More-
over, Dukart et al. demonstrated classification accuracy of 60.0%
using structural MRI, 80.0% using 18F-FDG PET, and 94.3% using
combined 18F-FDG PET and structural MRI to separate AD from
FTLD patients (18). This study supports our result that multimodal
imaging is superior to classify individual patients with different neu-
rodegenerative syndromes.

TABLE 2
Classification Based on Voxelwise Unimodal and Multimodal Outcome Measures

Measurement Validity
AD vs. others
(AD core)

bvFTD vs. others
(bvFTD core)

SD vs. others
(SD core)

PNFA vs. others
(PNFA core)

, DC . vx Accuracy (%) 70 70 77.5 87.5

Sensitivity (%) 55 36.3 100 0

Specificity (%) 85 82.7 75 100

Uni vs. multi P , 0.001* P , 0.001* P 5 0.003* P 5 1.0

, MET . vx Accuracy (%) 72.5 60 97.5 85

Sensitivity (%) 70 36.3 100 40

Specificity (%) 75 68.9 97.2 91.2

Uni vs. multi P , 0.001* P , 0.001* P 5 1.0 P , 0.001*

, VBM . vx Accuracy (%) 32.5 72.5 92.5 82.5

Sensitivity (%) 35 45.4 50 0

Specificity (%) 30 82.7 97.5 94.2

Uni vs. multi P , 0.001* P , 0.001* P , 0.001* P 5 0.25

, DC, MET, VBM . vx Accuracy (%) 77.5 82.5 97.5 87.5

Sensitivity (%) 80 54.5 100 0

Specificity (%) 75 93.1 97.2 100

Uni vs. multi and corresponding P value indicate statistically significant difference between unimodal (, DC . vx or , MET . vx or
, VBM . vx) vs. multimodal , DC, MET, VBM . vx values.

AD 5 Alzheimer disease; bvFTD 5 behavioral variant frontotemporal dementia; SD 5 semantic dementia; PNFA 5 progressive non-
fluent aphasia; DC5 degree centrality as proxy for regional functional connectivity; vx5 voxel-wise; MET5 glucose metabolism as proxy
for regional activity; VBM 5 voxel-based morphometry as proxy for regional gray matter volume.
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However, a recent study demonstrated that the combination of
rs-fMRI, DTI, and anatomic MRI did not significantly improve
classification accuracy compared with the unimodal measure-
ments (27). Discrepancy between our results and these results
might be due to different imaging modalities and their whole-brain
versus our approach derived from the NDH. In addition, Tang et
al. applied an automated image–based classification procedure to
separate patients with different neurodegenerative disorders using
18F-FDG PET and spatial covariance analysis and achieved 84%
sensitivity and 97% specificity for idiopathic Parkinson disease,
88% sensitivity and 94% specificity for progressive supranuclear
palsy, and 85% sensitivity and 96% specificity for multiple system
atrophy. This approach worked well with unimodal imaging and
does not require a priori knowledge of cores from the NDH (42).

Multimodal Versus Unimodal Outcome Measures

In general, classification accuracies based on multimodal outcomes
, DC, MET, VBM . vx were higher than those based on unimodal
measures such as , DC . vx (Table 2). Unimodal values separated
syndromes with different success. For example,, DC. vx separated
each disease with more than 70% accuracy, whereas , MET . vx

separated AD, SD, and PNFA with more than 70% accuracy but not
bvFTD. The results were not robust for , VBM . vx, probably
because our patients were in the mild to moderate stage of diseases.
Together with successful multimodal disease classification, this means
that although unimodal outcomes are partly different across syndromes,
multimodal values boost this difference. This finding suggests that
pathologic changes of specific syndromes are differentially
reflected by different aspects of changes (i.e., changes in regional
functional connectivity, activity, and brain structure), which are de-
tected by different views into the brain. Therefore, our finding sug-
gests that multimodal and regionally specific imaging markers have a
higher potential to serve as successful biomarkers for neurodegener-
ative syndromes. For PNFA versus others, , DC . vx accuracy
equals that of the multimodal approach (87.5%). Similarly, for SD
versus others , MET . vx accuracy equals that of the multimodal
approach (97.5%). These results may not be generalizable because of
the small sample size of these groups, but further studies with larger
samples should focus on this issue—that is, for specific disorders
such as PNFA and SD, a specific imaging modality may provide
accuracy comparable to that of the multimodal approach.

Voxelwise Versus Averaged Outcome Measures

Results indicate further that a voxelwise outcome measure has
a better performance for classification than regional averaged
measures. This finding suggests that within core regions, gradients
of brain measures provide valuable information to separate syndromes.
This point highlights the value of voxelwise outcome measures, which
are often ignored when using averaging procedures.

Classification on Core Region Not Derived from the NDH

The classification results based on voxelwise multimodal, DC,
MET, VBM . vx from the motor core were worse than the 4 cores
derived from the NDH, particularly in AD, bvFTD, and SD groups.
These findings support our hypothesis based on the NDH and high-
light the role of network abnormalities in pathophysiology of neu-
rodegenerative diseases.

Concatenated Multimodal Outcome Measures Versus

Integrated Measures

We used simple concatenation to build multimodal outcome mea-
sures. Concatenation preserves voxelwise and multimodal infor-
mation but does not integrate measures to reflect physiologically

relevant relationships across values. For example, one might sug-
gest that aberrant DC is systematically linked with aberrant local
metabolism (30), and integrative values might reflect such a link
(e.g., spatial correlation between DC and MET) and can be used
for classification (9). Future research is necessary to develop in-
tegrated measures of different aspects of activity, which are path-
ophysiologically relevant and valid for disease classification.

Limitations and Strengths

The current study has several limitations. First, the sample size
of this study is small particularly in the FTLD subgroups, limiting
the power of our findings. However, the prevalence of FTLD
patients particularly of SD and PNFA is low so that it is difficult to
recruit a large patient sample in a monocentric study. Second, our
findings are not validated for several aspects, which range from
diagnostic validation to methodologic–analytic issues. For exam-
ple, the validity of results depends critically on the validity of the
diagnosis of neurodegenerative syndromes (43), which should be
optimally based on neuropathologic findings. Although leave-one-
out cross-validation of classification results was performed, vali-
dation of findings in an independent sample of patients might be
helpful. Third, classification results might be biased, because clin-
ical diagnostic procedures involved qualitative inspection of 18F-
FDG PET and structural MRI data. Fourth, as mentioned above,
our multimodal outcome measure is based on regional neuroimag-
ing properties and it is not based on direct pathophysiologic aspects
specific for each neurodegenerative syndrome. Fifth, application of
this regional approach based on the NDH is not feasible for other
neurodegenerative variants when prior knowledge of specific cores
is unavailable. With these points taken together, our study fulfills
criteria of a preliminary study, which searches for initial evidence
that combining the NDH and multimodal imaging is helpful for
individual patient separation in different neurodegenerative syn-
dromes. On the other hand, our study has some strengths: first, the
idea of combining the NDH and multimodal imaging is simple.
Second, the NDH, which has been strongly confirmed by many
different studies, is applicable for different neurodegenerative syn-
dromes. Third, to our best knowledge, this is the first study on
FTLD patients using the simultaneous PET/MR measurement.
Finally, applied analytic methods are well elaborated and widely
used and available. Given the high intraindividual variability of
neural functions, the simultaneous PET and MRI measurement in
a single examination provides unique opportunities to study the
relationship between different parameters in the same condition
(29–31). However, separate MRI and PET imaging could be used
also to assess metabolism, atrophy, and connectivity in neurode-
generative syndromes successfully. In addition, 18F-FDG PET im-
aging may eventually be substituted by blood flow marker such as
arterial spin labeling (44,45), which would allow this technique to
be applied to MRI-based studies when PET imaging is not available.

CONCLUSION

We provide preliminary evidence that applying multimodal
imaging based on assumptions derived from the network neuro-
degeneration hypothesis has the potential to yield imaging bio-
markers for neurodegenerative syndromes.
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