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Clustering very large datasets while preserving cluster quality remains a challenging data-mining task
to date. In this paper, we propose an effective scalable clustering algorithm for large datasets that builds
upon the concept of synchronization. Inherited from the powerful concept of synchronization, the proposed
algorithm, CIPA (Clustering by Iterative Partitioning and Point Attractor Representations), is capable of
handling very large datasets by iteratively partitioning them into thousands of subsets and clustering each
subset separately. Using dynamic clustering by synchronization, each subset is then represented by a set
of point attractors and outliers. Finally, CIPA identifies the cluster structure of the original dataset by
clustering the newly generated dataset consisting of points attractors and outliers from all subsets. We
demonstrate that our new scalable clustering approach has several attractive benefits: (a) CIPA faithfully
captures the cluster structure of the original data by performing clustering on each separate data iteratively
instead of using any sampling or statistical summarization technique. (b) It allows clustering very large
datasets efficiently with high cluster quality. (c) CIPA is parallelizable and also suitable for distributed data.
Extensive experiments demonstrate the effectiveness and efficiency of our approach.
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1. INTRODUCTION

Real-world datasets in today’s data generating and collecting world often encompass
millions or billions of objects. Clustering such large data becomes difficult for most of
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the established clustering algorithms due to the problem of unacceptable computation
time. To handle this problem, many scalable clustering algorithms have been proposed.
Currently, there are two main strategies for clustering very large data: data sam-
pling [Kaufman and Rousseeuw 2009; Guha et al. 1998; Milenova and Campos 2002;
Havens et al. 2012] and data summarization [Zhang et al. 1996; Breunig et al. 2001,
Andritsos et al. 2004]. Sampling-based approaches try to reduce the original large
dataset by drawing a sample using different sampling techniques. Data summariza-
tion related methods try to condense the original data into a more compact summarized
data representation by using different compression techniques, such as Cluster Fea-
tures (CF) [Zhang et al. 1996], and Data Bubbles [Breunig et al. 2001]. However, both
types of scalable clustering algorithms determine the cluster structure only on sampled
or summarized data, and thus the quality of the clustering is difficult to be preserved.

Recently, inspired by natural synchronization phenomena, many synchronization-
based clustering algorithms [Kim et al. 2008; B6hm et al. 2010; Shao et al. 2011]
have been introduced and have demonstrated attractive properties compared to many
existing clustering algorithms. However, like most existing clustering algorithms,
synchronization-based clustering algorithms are computationally intensive and do not
scale well with the number of observations.

In this paper, we propose a new scalable clustering algorithm, CIPA (Clustering by
Iterative Partitioning and Point Attractor Representations), generalizing the idea of
synchronization-based clustering algorithms (like Sync [Bohm et al. 2010]) to scale up
to large volumes of data. The contributions of the paper are as follows:

(1) Simple, yet intuitive and effective approach. While adapting synchronization-based
clustering in this way may appear as only a small step, it gives the overall approach
a new quality and in fact overcomes its scalability limitations. Unlike traditional
algorithms using the divide-and-conquer strategy, the crucial point is that the
concept of synchronization with its focus on local neighborhoods of data points
lends itself to a random partitioning of larger datasets into smaller datasets. To the
best of our knowledge, it is the first clustering algorithm that allows handling large
dataset naturally by random data partitioning. The type of partitioning required
by other, related algorithms, is based on geometry rather than random sampling.
It is evident that a suitable geometric partitioning of an input space is (a) not
straightforward to define and (b) most likely computationally costly.

(2) Scalability. CIPA allows clustering on a specific representation of the original
dataset, a so-called point attractor representation, rather than any sampled or
summarized data. Thanks to the synchronization-based point attractor (PA)
representation, CIPA allows partitioning data into as many subsets as necessary
or possible in a given application in a natural fashion. CIPA lends itself to
parallelization and also can work on distributed data. In the results section, we
show that CIPA is able to cluster one hundred million data points in only a few
minutes.

(8) High-quality clustering. Unlike other sampling or summarization-based scalable
clustering algorithms, the PA representation allows maintaining the cluster struc-
ture of the original dataset. Therefore, CIPA not only allows clustering large
datasets efficiently in a divide-and-conquer fashion, but more importantly, the
properties of synchronization-based clustering are inherited and cluster quality
is thus preserved. As it turns out in the results section, CIPA is not only more
accurate than the well-known scalable clustering algorithms CURE, BIRCH, and
reckFCM on smaller, labeled data, it also outperforms these algorithms on larger
real-world data.
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The remainder of this paper is organized as follows: In the following section, we
briefly survey related work. Section 3 presents our algorithm in detail and we give
its parallel implementation in Section 4. Section 6 contains an extensive experimental
evaluation. Finally, we give a short discussion and conclude in Section 7.

2. RELATED WORK

During the past several decades, many algorithms [Kanungo et al. 2002; Bahmani
et al. 2012; Orlandic et al. 2005; Guha et al. 1998; Zhang et al. 1996; Breunig et al.
2001; Kwon et al. 2010; Banerjee and Ghosh 2006; Ying et al. 2014; Havens et al. 2012]
have been proposed for clustering large datasets, which can largely be divided into
two categories. The first solution is to speed-up the clustering process based on some
space-partitioning data structures such as the KD-tree [Kanungo et al. 2002] and space
reduction [Orlandic et al. 2005] or by reducing the number of iterations [Bahmani et al.
2012]. Another main stream is to propose new scalable clustering algorithms. Here, we
only provide a brief survey of scalable clustering algorithms related to our work.

Data sampling. Data sampling is probably the most widely used method to reduce a
large dataset to speed-up clustering algorithms to handle large datasets. The basic idea
of data sampling-related scalable clustering methods is to randomly draw a smaller
sample using different sampling strategies and then apply the clustering algorithm to
the small subset instead of the whole dataset. If the sample size is large enough, this
type of algorithm is usually expected to detect the same cluster structure as in the
original data. For instance, CLARA [Kaufman and Rousseeuw 2009] draws multiple
samples from the dataset and then applies PAM (Partitioning Around Medoids) on
samples and finally selects the optimal clustering results. CURE [Guha et al. 1998]
employs a hierarchical clustering approach that uses a number of representative points
to define a cluster instead of a single centroid and thus allows discovering clusters of
complex shapes and different sizes. To handle large datasets, CURE combines the tech-
niques of random sampling and partitioning. For partitioning, it is successful only if
there is a certain amount of objects from each cluster for every partition. Banerjee and
Ghosh [2006] proposed several scalable clustering algorithms by considering balancing
constraints. Like CURE, these algorithms first sample a small representative subset,
then cluster on the sampled data, and finally populate and refine the clusters. Recently,
Havens et al. [2012] compare the efficacy of three different implementations of tech-
niques aimed to extend fuzzy c-means (FCM) clustering to very large data. The random
sample and extend kernel FCM (rsekFCM) follows an idea similar to the one of CURE
and CLARA, the initial sample is first chosen and then clustered using weighted kernel
FCM (wkFCM). The cluster prototypes yielded by wkFCM are then used to extend the
partition to the entire data. As the kernel function is applied, the algorithm allows
finding non-linear clusters in principle. However, this also leads to a high space com-
plexity. For all these sampling-based clustering algorithms, the quality of clustering
heavily depends on the sample size and the effectiveness of the sampling techniques.

Data summarization. This type of scalable clustering first compresses the original
dataset by some summarization, and then performs clustering on the summarized
data. BIRCH [Zhang et al. 1996] is a typical data summarization-based scalable clus-
tering algorithm. The basic idea of this algorithm is to use a balanced data structure
called CF-Tree (Cluster Feature tree) for storing statistical summary information of
subclusters of objects, which attempts to preserve the cluster structure of the dataset.
The hierarchical clustering is then performed on leaf nodes of the tree. Inheriting
from k-centroid style clustering, BIRCH usually fails to detect non-spherical clus-
ters. In Bradley et al. [1998], another compression technique for scaling up clustering

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 1, Article 5, Publication date: July 2016.



5:4 J. Shao et al.

algorithms is proposed. The approach produces basically the same type of compressed
data items as BIRCH, but separates data points into three types of sets. Based on the
CF-Tree, Breunig et al. [2001] introduce the Data Bubble, a more specialized kind of
compressed data representation, suitable for hierarchical clustering. In general, the
performance of data summarization methods critically depends on whether the form
of summarization (e.g., statistical information like the CF-tree or prototypes) captures
the genuine cluster structure of the original data.

Hardware speed-up or parallel platforms. Besides abstractions of the original
dataset, strategies to handle large datasets make use of Map-Reduce frameworks [Zhao
et al. 2009] or modern parallel data processing systems [Kwon et al. 2010]. Zhao et al.
[2009] have implemented the parallel K-Means clustering in the Map-Reduce frame-
work. The core idea behind Map-Reduce is mapping your dataset into a collection of
< key, value > pairs, and then reducing overall pairs with the same key. Similar work
can be found in the literature [Ludwig 2015; Kim et al. 2014; Fu et al. 2014]. An-
other main direction is to use GPUs to handle datasets [Cao et al. 2006; Bohm et al.
2009; Wasif and Narayanan 2011; Adinetz et al. 2013] or other parallel data process-
ing system, such as DryadLINQ [Kwon et al. 2010]. In these approaches, established
clustering algorithms are extended to scale up to large datasets by means of various
parallel platforms and hardware.

Generally, current scalable clustering algorithms often work on sampled or summa-
rized data. Therefore, the quality of the clustering may be compromised, if the form
and bias of the summarization does not match the characteristics of a dataset. In
this paper, we propose a new synchronization-based scalable clustering algorithm that
clusters the original data building upon the so-called PA data representation and iter-
ative data partitioning. As the partitions are randomly sampled, they do not have to
be constructed specifically and therefore do not assume any specific properties of the
data. Experimental results (see Section 6) show that synchronization-based clustering
works particularly well together with random partitioning, giving accurate clusters at
low running times.

3. SYNCHRONIZATION-BASED SCALABLE CLUSTERING
In this section, we present the CIPA algorithm for parallel data clustering.

3.1. Synchronization and Point Attractor Representations

Before we can give an overview of the approach, we need to explain the main underlying
concepts of synchronization and PA representations.

Synchronization is a prevalent phenomenon in nature. It is known that synchroniza-
tion is rooted in human life from the metabolic processes in our cells to the highest
cognitive tasks we perform as a group of individuals [Arenas et al. 2008]. A paradig-
matic example of a synchronization phenomenon in nature is the synchronous flash-
ing of fireflies observed in South Asian forests [Acebron et al. 2005]. Recently, many
synchronization-based models [Dirk Aeyels 2008; Bohm et al. 2010] and data-mining
algorithms [Kim et al. 2008; Bohm et al. 2010; Shao et al. 2010, 2011; Hong et al. 2012;
Huang et al. 2013; Shao et al. 2014] have been proposed and showed many desirable
properties. The key idea of clustering approaches by synchronization (e.g., in Sync and
ORSC [Shao et al. 2011]) is to view each data object as a phase oscillator, the feature
vector of an object as its phase, and simulate the dynamical behaviors of the objects
over time. By the interaction with similar objects, the phase of an object gradually
aligns with its neighborhood, resulting in a non-linear object movement driven by the
local cluster structure. Finally, the objects in a cluster are synchronized together and

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 1, Article 5, Publication date: July 2016.



Scalable Clustering by lterative Partitioning and PA Representation 5:5

A N
[ ] ]
C1
PA1
|
PA2
g [
C2
[ ] [ ]
[ ] L]
(a) Synchronization-based Clustering (b) Point Attractor Representation

Fig. 1. Illustration of synchronization-based clustering and the point attractor representation.

have the same phase (feature vector). Figure 1 displays two snapshots of the simulated
dynamical object movement for data synchronization. Specifically, there are two clus-
ters (C1 and C2) and three outlier objects. With interaction among objects (Figure 1(a)),
the objects in two clusters C1 and C2 are finally synchronized together, respectively
(Figure 1(b)). In this paper, we define the synchronized phases as PAs. Formally, a PA
is defined as follows.

Definition 1 (A point attractor). A PA is a point in the phase space, where a set of
objects S € D is finally synchronized together by dynamic clustering. It is defined to be
triple: PA = (p, w, ids), where p is the final synchronized phase (i.e., the feature vector
resulting from a clustering) of the set of objects S, w is the number of objects in S, and
ids is the unique IDs of these objects.

A PA characterizes the common phase for a set of objects after dynamic clustering
and thereby not only enables to represent all objects in this set, but also envelops the
local cluster structure of these objects (i.e., a small cluster). With this definition, fi-
nally, the whole dataset in Figure 1 is represented by two PAs and three outlier objects
(Figure 1(b)). For the purpose of this paper, an outlier object is also a triple O =
(p, w, ids), where p is its original phase, w = 1 and ids is its unique ID. Unlike other
data summarization techniques such as CF in BIRCH, which store the statistical infor-
mation of all objects in a subcluster, the PAs really store the cluster structure (clustering
results) of a dataset. As will be shown below, the combination of synchronization-based
scalable clustering and random partitioning (cf. Section 3.3) exhibits many attractive
properties in practice.

3.2. Intuition and Overview

We consider scalable clustering building on the PA-based data representation and a
simple, yet effective strategy: divide-and-conquer. Inheriting from the powerful concept
of synchronization, our method allows partitioning large data into thousands of subsets
(divide) and clustering each subset separately (conquer). The clustering results of each
subset are then represented by a set of PAs and some outlier objects, if existing. A
new dataset is generated by collecting PAs and outliers from all subsets. If the size of
this new dataset is still large, a new divide-and-conquer procedure is performed, until
its size is small enough according to the user’s needs. Finally, the cluster structure of
the original data can be explored by clustering the final new dataset as it contains
all clustering results from each level and corresponding data structure information.
Figure 2 gives an overview of our scalable clustering by synchronization. The algorithm
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Fig. 2. Intuition of scalable clustering by synchronization.

(a) Data (b) Part 1 (Clustering) (c) Part 2 (Clustering) (d) Final Clustering
. - P1 x X P1 X XP1

(&} .

277N - ,:':\) x ’__C];\ X
ﬁ'.:.‘.‘. L2 —=>| A~ -, + fo° ot —_| s N
leege o .o\ /e o\ log! [:-.\ AN I .1... \, l. .A. .\ C2

N Vel e Lemt VL e U oy
\\- O /l \.'../ - P .\-‘} \;. '/I P2 S---7 ( )
~ - . ~ >\P2 - R x \ _’
x X

Fig. 3. Data partitioning for synchronization-based clustering.

starts with the data partitioning (Figure 2(b)). Here, only two partitions are used for
better illustration. For each partition, we cluster separately using the synchronization-
based dynamic clustering introduced in Section 3.4 (Figure 2(c)). After clustering, the
clustering results in each partition are represented by PAs (square markers) and outlier
objects. Subsequently, all PAs (square markers) and outlier objects from both partitions
are collected together to form a new dataset (Figure 2(d)). As the new dataset is small
enough, the final clustering is directly performed on it (Figure 2(e)) without further
partitioning and clustering. In the following, we will elaborate on how to partition
a dataset and why it works in conjunction with our synchronization-based scalable
clustering algorithm.

3.3. Data Partitioning

Unlike other scalable clustering algorithms starting with drawing a sample or sum-
marizing a dataset, our method handles large data by randomly partitioning it into
thousands of subsets of fixed small size. However, the crucial question arises: Why does
the partitioning technique work for our scalable clustering algorithm and what is the
reason behind this?

For synchronization-based clustering algorithms, one salient feature is that cluster
formation is driven by the local data structure, and all objects in a cluster dynamically
move together (a PA). Therefore, with the PA representation, the local structure within
each partition can be maintained. This means that although the size of the new dataset
is smaller than the original dataset, the cluster structure is still maintained and repre-
sented by the PAs and outliers in the new dataset. In addition, synchronization-based
clustering algorithms are robust to noise or outlier objects. Thus, global noise or out-
lier objects in the original data can be easily identified in each separate partition.
To illustrate this partitioning for synchronization-based clustering, Figure 3 provides
a simple example where the original data contains two clusters and four outlier ob-
jects. For instance, with random partitioning (Figure 3(b) and (c)), cluster C1 is split
into three sub-clusters (two clusters in partition 1 and one cluster in partition 2), and
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Fig. 4. K-Means clustering effect with the divide-and-conquer strategy.

cluster C2 is segmented as one cluster in partition 1 plus one object in partition 2. The
four global outlier objects are scattered across both partitions. By dynamic clustering,
which we will introduce in the following Section 3.4, partition 1 is represented by three
PAs (green square markers) and two outlier objects (green cross markers). Similarly,
partition 2 is replaced by three PAs and three outlier objects, where cluster object P2 in
the original data is regarded as an outlier object temporarily. Finally, the new dataset
has six PAs and five outlier objects (Figure 3(d)). It is intuitive to see that the cluster
structure of the original dataset is maintained in the new dataset. Therefore, with the
final clustering on the new dataset, we can obtain two clusters and four outlier objects,
where object P2 in partition 2 becomes the cluster object in C2 finally, and the outlier
objects (e.g., P1) are easily discovered.

Moreover, it is important to note that the divide-and-conquer strategy fits well to our
synchronization-based clustering, in contrast to many other existing cluster algorithms,
such as K-Means, DBSCAN, and the like. Let us take the typical K-Means algorithm
for example. As K-Means is sensitive to outlier objects, to exclude the outlier effect,
we remove four outlier objects before data partitioning. With the same partitioning on
the two clusters in the original data (Figure 4), we perform the K-Means algorithm on
each partition. However, it does not work for partition 1, as the objects in C1 and the
objects in C2 in the original dataset are merged into one cluster. The reason is that K-
Means splits the whole data space into distinct Voronoi cells, and thus the local cluster
structure of the original data cannot be maintained in a partition. Finally, we cannot
find the intrinsic cluster structure by re-clustering all centroids from the K-Means
clustering results from the two partitions (Figure 4).

3.4. Dynamic Clustering by Synchronization

In this section, we generalize the synchronization-based notion [Bohm et al. 2010; Shao
et al. 2011] to scalable clustering on large datasets. Typically, a synchronization-based
clustering algorithm needs three definitions to simulate a dynamic clustering process:
first, a parameter ¢ specifying the interaction range among objects, and second, the
interaction model for clustering, and finally, a stopping criterion to terminate dynamic
clustering. Our approach follows the definitions of synchronization-based clustering
underlying the algorithm Sync [Bohm et al. 2010]. In the following, we give a short
summary of all necessary definitions.

Definition 2 (Range neighborhood). Given a € € R and x € D. The e-range neighbor-
hood of an object x, denoted by N.(x), is defined as follows:

N.(x) = {y € D|dist(y, x) < €}, (1)

where dist(y, x) is a metric distance function, and the Euclidean distance is used in
this study.
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Definition 3 (Interaction model). Let x € R% be an object in the dataset D and x;
be the ith dimension of the data object x, respectively. With an e-range neighborhood
interaction, the dynamics of each dimension x; of the object x is defined by the following:

5t +1) =x(0) + - Y sin(yi(®) — %)), 2)

1
NGO =)

where sin(-) is the coupling function. x;(¢ + 1) describes the renewal phase value of the
ith dimension of object x at ¢ = (0, ..., T') during the dynamic clustering.

To characterize the level of synchronization between oscillators during the synchro-
nization process, we define an order parameter. Instead of considering a global order
parameter, a cluster order parameter R, is defined to measure the coherence of the
local oscillator population.

Definition 4 (Cluster order parameter). Itis used to terminate the dynamic clustering
by investigating the degree of local synchronization, and is defined as follows:

1 1
_ E : § : —ly—xI|
o= |D| IN.(x)| © ’ ®

xeD yeN(x)

where D is the dataset. N (x) is the e-range neighborhood.

The dynamic clustering terminates when R.(¢) converges, which indicates local phase
coherence. At this moment, all cluster objects have the same phase (identical location
in the feature space).

For dynamic clustering, each data object is viewed as a phase oscillator and has its
own phase (feature vector) at the beginning. As time evolves, each object interacts with
its e-range neighborhood according to the interaction model (Equation (2)). With local
interactions, the phase of an object gradually aligns with its neighborhood driven by
the local cluster structure for each time step. Finally, the cluster order parameter is
used to terminate dynamic clustering when R, converges.

Like in Figure 1, each object interacts with its similar objects, and finally all objects
in C1 and C2 are synchronized together and form clusters. Meanwhile, since the outlier
objects do not interact with other objects, during the dynamic clustering, they maintain
their original values and thus can be read off immediately.

3.5. CIPA Algorithm
In this section, we describe the algorithm CIPA, which involves the following steps:

(1) Data partitioning. First, the original large dataset is randomly split into many par-
titions of fixed size FixSize, where FixSize is usually very small compared to the
original dataset size. As the final clustering results are not particularly sensitive
to this parameter, we specify it as FixSize = 200 in all further experiments.

(2) Dynamic clustering. For each partition, with suitable interaction range ¢, we per-
form the synchronization-based dynamic clustering, and finally each partition is
represented by a set of PA and some outlier objects, if existing.

(3) New data generation. As the PAs and outliers represent the clustering results in
each partition, a new dataset is generated by putting them together. It is important
to note that the cluster structure of the new generated data is well preserved due
to the desirable property of the synchronization-based clustering.

(4) Final clustering. If the size of the new dataset is small enough (e.g., lower than
Max NumObj), then the cluster structure of the original data is obtained by
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Fig. 5. Illustration of synchronization-based scalable clustering.

clustering on the new dataset. Otherwise, we repeat steps 1-3 until the size of
the newly generated dataset is smaller than Max NumObj.

Based on the data partitioning and the PA representation, our scalable clustering
allows clustering very large datasets iteratively. After each divide-and-conquer step,
the newly generated data does not change the original cluster structure, but the size
of the dataset decreases significantly.

To the best of our knowledge, this is the first scalable clustering algorithm that works
on exactly the original large dataset. Based on this property, CIPA inherits all benefits
from synchronization-based clustering. This means that our method not only enables
to handle very large data, but also yields good clustering results, which is difficult
for existing scalable clustering algorithms based on sampling or summarization tech-
niques (see Figure 5(b)—(d)). Figure 5(b)—(d) illustrates the newly generated dataset
represented by PAs and outliers on different levels during scalable clustering, where O
indicates a PA and x indicates an outlier object. It is interesting to note that the cluster
structure of the original dataset is maintained in the newly generated data at different
levels.

3.6. Interaction Range Estimation

CIPA needs to specify the interaction range ¢ at two stages: first, when clustering the
partitions, and second, when performing the final clustering. For the first stage, to
guarantee a stable interaction of each object, we specify ¢ with the average value of the
k-nearest neighbor distance determined from a random partitioning, where % is small
ranging from 3 to 10. In this paper, we set £ = 5. A small interaction range ensures
that the original cluster structure for each partitioning data is maintained. It is not
important that the cluster objects in each partitioning data are regarded as noise due
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Fig. 6. Interaction range ¢ estimation.

to the small interaction range since finally these objects will re-cluster again on the
next level (divide and conquer). Therefore, for the interaction range at this stage, a
small interaction range (average value of the 5-nearest neighbor distance) is a good
choice for most cases.

The second stage of interaction range specification is the final clustering. Here, we
present a new simple and effective heuristic rather than a complicated model selection-
based method (e.g., based on the MDL principle in Sync [B6hm et al. 2010]) to estimate a
suitable interaction range for the final clustering by investigating the distances among
clusters. If there are some clusters in the datasets, intuitively, the distances among
two clusters should be large (see Figure 6). Namely, we can use the cluster distribution
to infer the suitable interaction range. Here, the PAs in the final data are considered
only as they can represent the main cluster structure of the dataset (see Figure 6(a)).
Specifically, supposing there are two lists of objects in the beginning: uncheck consisting
of all PAs, and check = (. We first randomly select one PA (named P) in uncheck and
move it into check. Then, we search for the object in uncheck (e.g., @) nearest to P
and move @ into check. Meanwhile, the distance between P and @ is recorded in a
vector Near Dists. We iteratively search one object in uncheck with the nearest distance
to any object in check, move it to check and record the distance into Near Dists, until
uncheck is empty. In this way, the objects in a cluster will be searched first, as the
distances among them are relatively small. However, the distance in NearDists will
suddenly peak when an object in another cluster is checked. Therefore, the distances
between clusters can be inferred from the peak distances in Near Dist. Here, the peak
distances are defined as distances in Near Dists that are five times the mean distance
in Near Dists. Figure 6(b) plots the distances in Near Dists, and it is evident that there
are three peak values which correspond to the distances between four clusters. From
this plot, general information about the cluster structure can be inferred, such as the
number of clusters and the distances among the clusters. Finally, based on Near Dists,
the interaction range is computed as follows:

€ = min{minPeak, avg Peak/2}, 4)

where minPeak is the minimal peak distance in Near Dists and avg Peak is the mean
of all peak distances in Near Dists. Finally, putting all together, the pseudocode of the
CIPA algorithm is summarized in Table I.

3.7. Complexity Analysis

For traditional synchronization-based dynamical clustering, the runtime complexity
with respect to the number of data objects is O(T - N?), where N is the number of objects
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Table |. Pseudocode of the CIPA Algorithm

algorithm [C, O] = CIPA(D, FixSize, Max NumObj)

D* = D //Initialization
while(D*.Size > MaxNumObj)
P = Partitioning(Dx, FixSize);
D* = null; e = NN(k); I/k =5
for(i = 0;i < P.Size; i++)
R= DynamicClustering(P.get(i), €);
D*.add(R);
end for
end while
€ = ParaEstimation(D*) // Equation (4)
[R] = DynamicClustering(D*, ¢);
C = R.Get(C); O = R.Get(O)
Return C, O;

Function P = Partitioning(D, FixSize); //[Data Partitioning.
np = Math.Ceil(D.Size/FixSize); //Number of partitions
for(i = 0;i < np;i ++)

Randomly select FixSize different objects, named D;, in D;
D.remove(D;);
P.add(D;);
end for
return P;

Function [R] = DynamicClustering(D, ¢); //Dynamic Clustering
while(loopFlag = true)
for(each object x € D)
Search N, (x) of object x
Update its new phases using Equation (2);
end for
Set D* to be the new phases of all objects
Compute cluster order parameter R;
if (R, converges)
loopFlag = false;
end if
end while

// New data set generation.

Set all objects in D* unchecked;
for(each object x € D* and x is unchecked)
Search all objects in D* that synchronize with x, namely Set;
If (Set.Size > 1);
Set all objects in C checked;
C.p = x.phase; C.w = Set.Size;
C.ids = All ids of objects in Set;
R.add(C); //point attractor objects
Else
O.p = x.phase; O.w = 1; O.ids = x.ids;
R.add(C); //outlier object
End If
End For
return R;

and T is the iterations. In most cases, 7' is small with 5 < 7' < 20. For the algorithm
CIPA, the running time is significantly reduced due to the PA-based data representation
and the divide-and-conquer strategy. The dynamic clustering for each partitioning data
is O(T - Ng), where N, is the fixed size number of objects for each partition data (e.g.,
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200) and N, < N. The time complexity for all partitions is thus O(ZZL:1 T -Ng),
where L is the number of levels and p; is the number of partitions in each level. For
example, there is a dataset with one hundred million objects. For Sync, the computation
time is 7' x 106, For CIPA, supposing MaxNumObj = 1,000, partitioning size N, =
200, and new data size reduced to one-tenth of the data size at previous scale, finally,
its running time is: 7' x ((500, 000 + 50, 000 + 5, 000 + 500 + 50) x 2002 + 1, 0002) =
T x 2.2223 x 10'°. Comparing with Sync, CIPA is about 4.5 x 105 times faster. For
traditional sampling methods, such as CURE (2.5% of data), for the time complexity
O(N? - log N,), with N, being the number of objects after sampling, computation time
is about: 9 x 103, which is about 4 x 10° times slower compared to CIPA. With the
parallel implementation, the algorithm can be executed independently on each part of
the data. Therefore, the running time is reduced to O(L - T - Ng) in theory.

4. PARALLELIZATION WITH CUDA

The design of CIPA allows parallelization since each partition can be executed indepen-
dently. In this section, we use the CUDA programming model to demonstrate how an
efficient parallel implementation can be designed for modern many-core accelerators
(GPUs) which are attached to a host CPU via PCle. Our CUDA parallelization uses a
single-thread block for each partition. Initially, data objects are transferred to the GPU
global memory and only the CIPA clustering results are transferred back to the CPU.
Clustering operations are implemented as a number of CUDA kernels in order to avoid
costly data movements between GPU and CPU memory.

—Partitioning. For data partitioning, an integer array L is first generated in a global
memory to store permutation indices of all data objects at each divide-and conquer
level. Afterwards, every partition (e.g., P;) containing FixSize data objects with the
indices L; (i.e.,i x FixSize < L; < (i + 1) x FixSize) is generated and assigned to an
independent thread block with FixSize threads.

—Dynamic clustering. For this step, each thread block works independently and the
distance computations between objects are required using Equations (2) and (3),
the data objects from global memory are thus transferred into the per-block shared
memory. The renewed phases of data objects during synchronization are also kept in
shared memory and only updated to CUDA global memory at the end of the kernel
in a coalesced manner. Finally, a new dataset is generated by collecting clustering
results (PAs and outliers) from all partitions.

To represent the clustering results after each synchronization level, the integer array
L of size N is kept in CUDA global memory. Initially, L; is set to i which means
object with index i has not synchronized to any object. The final result will look like
a forest in which each tree has a root that is associated with a data object that has
not synchronized to any other objects. Using this data structure, we can quickly record
all the objects that are synchronized to an object x. Consequently, we can generate a
new array L for the next divide-and-conquer level which is a permutation of all the
root nodes. Our current CUDA implementation is able to work on input datasets with
dimensionality up to 48 due to the limited size of the shared memory available in a
CUDA-enabled device.

5. RELATIONSHIP TO OTHER MAJOR CLUSTERING PARADIGMS
5.1. Synchronization-Based Clustering Algorithms

Inspired by natural synchronization phenomena, many synchronization-based cluster-
ing algorithms [Kim et al. 2008; Shao et al. 2013b, 2011] have been introduced recently
and have demonstrated attractive properties compared to many existing clustering
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algorithms. For instance, (a) the clusters revealed by dynamic clustering truly reflect
the intrinsic structure of the dataset; (b) they allows detecting clusters of arbitrary
number, shape, and data distribution, even in difficult settings with noise points and
outliers. Unlike traditional clustering algorithms, synchronization-based clustering is
a dynamic process and driven by local data structure, and also allows for a natural hier-
archical analysis (i.e., a set of synchronized objects can be viewed as a new data object
(PA), which provides a natural data abstraction). However, like most existing clus-
tering algorithms, synchronization-based clustering algorithms are computationally
intensive and do not scale well with the number of observations. The proposed method,
CIPA, builds upon PA representations and divide-and-conquer, a simple yet effective
way to handle large-scale dataset. CIPA mainly advances the current synchronization-
based clustering algorithms (e.g., Sync) by addressing its efficiency problem. It is able
to cluster one hundred million data points in only a few minutes. More importantly,
CIPA does not degrade the cluster quality, and the properties of synchronization-based
clustering are inherited. CIPA also lends itself to parallelization (like the CUDA imple-
mentation of CIPA, see Section 4) and distributed data. Therefore, equipped with the
benefits of traditional synchronization-based clustering and its scalability, CIPA shows
its superiority over state-of-the-art algorithms in both effectiveness and efficiency
aspects.

5.2. Other Scalable Clustering Algorithms

Following the divide-and-conquer strategy, the original dataset is partitioned by ran-
dom sampling in the CIPA algorithm, before each partition is clustered separately.
Divide-and-conquer is an old and simple strategy, yet is widely used in many complex
situations. In the context of clustering, traditional approaches often resort to a suitable
(geometric) division of the feature space to split large datasets, which may be hard to
define and most likely computationally hard to find, like some space-partitioning data
structures such as the KD-tree [Kanungo et al. 2002] and space reduction [Orlandic
et al. 2005]. However, scaling up synchronization-based clustering with a divide-and-
conquer strategy is a natural fit, as PA preserve local cluster structure well, even in the
case of sparser densities as created by random sampling. The core difference between
CIPA and other algorithms with the divide-and-conquer strategy is that the cluster-
ing results of CIPA do not rely on a specific data partitioning strategy, which gives
a big advantage in its computational efficiency and clustering quality. Another main
line of research on scalable clustering employs specific data structures or sampling to
represent the data like BIRCH [Zhang et al. 1996], CURE [Guha et al. 1998], Bub-
ble [Breunig et al. 2001], and FCM [Havens et al. 2012]. Those algorithms share the
benefit of reduced data, which, however come with the drawback that the clustering
quality tends to degrade if the data abstraction does not keep the original data distri-
bution. The PA representations in CIPA, is still a data summarization technique in a
strict sense. However, as the PA envelops its intrinsic cluster structure, the original
cluster structure is well preserved. In addition to data-driven approaches, many clas-
sical algorithms have been extended to handle large datasets by making use of modern
parallel platforms and hardware, such as Map-Reduce-style frameworks [Zhao et al.
2009; Ludwig 2015; Kim et al. 2014; Fu et al. 2014], GPU implementations [Cao et al.
2006] and others [Bohm et al. 2009; Wasif and Narayanan 2011; Adinetz et al. 2013].
Along those lines, CIPA lends itself to parallelization, which is shown in the last part
of Section 6.4 (speed-up w.r.t. GPU implementation).

6. EXPERIMENTAL EVALUATION

Before we move on to present scalability experiments with CIPA, which we consider
the main results of the paper, we investigate the effectiveness of the approach.
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Selection of comparison methods. To study the performance of CIPA, we compare it
to the synchronization-based clustering algorithm Sync! and two representatives of
scalable clustering paradigms on synthetic and real-world data: the summarization-
based hierarchical clustering algorithm BIRCH [Zhang et al. 1996], the sampling-
and partitioning-based algorithm CURE [Guha et al. 1998], and the prototype-based
kernel algorithm rsekFCM [Havens et al. 2012]. In the experiments, we set the param-
eters of the algorithms to the default values suggested in the corresponding original
papers. For instance, in BIRCH, about 1,000 objects are considered for the final hi-
erarchical clustering after re-building the CF-tree, and the sample size is chosen to
be 2.5% of the original data, and 50 partitions are chosen for speeding up cluster-
ing large datasets in CURE. For rsekFCM, like CURE, the sample size is chosen
to be 2.5% of the original data. Except for the CUDA version of CIPA, CIPA and
all compared algorithms have been implemented in Java and all experiments have
been performed on a workstation with 3.0GHz CPU and 32GB RAM. The source
codes of different clustering algorithms and the synthetic datasets are available at
(http://staff.uestc.edu.cn/shaojunming/files/2015/08/SourceCode.rar).

Evaluation measures. Comparing the results of different clustering algorithms with
respect to effectiveness is a non-trivial problem, especially if different algorithms pro-
duce results with different numbers of clusters. To provide an objective comparison of
effectiveness, we report three widely used evaluation measures: Cluster Purity [Zhao
and Karypis 2002], Normalized Mutual Information (NMI) [Strehl and Ghosh 2003],
and Adjusted Rand Index (ARI) [Rand 1971]. For all these measures, higher values
indicate better clustering.

6.1. Synthetic DataSets

We start the evaluation with two-dimensional (2D) synthetic data to facilitate the
presentation and demonstrate the benefits of CIPA.

Performance on small dataset. To evaluate the performance of CIPA, we first compare
it to the synchronization-based clustering Sync and check whether the partitioning
and PA representations work even on small datasets. Figure 7(a) gives the clustering
results on the same dataset as in the original Sync publication [Bohm et al. 2010],
showing the advantages over many state-of-the-art clustering algorithms. The dataset
(DS2) contains 1,226 objects with eight arbitrarily shaped clusters and outlier objects.
With CIPA, we partition it into 12 subsets with 100 objects each, and one with only 26
objects. Finally, CIPA successfully detects all the clusters and outlier objects. Even on
this small dataset, the PA and outliers can summarize the cluster structure effectively.
The clustering results of other algorithms are further plotted in Figure 7(b)—(e).

Comparison to other scalable clustering algorithms. For comparison, we created a 2D
dataset DS3 consisting of six arbitrarily shaped clusters plus noise points, cf. Figure 8.
For BIRCH, by re-building the CF-tree for many times, the best results have been
achieved for the final hierarchical clustering with six clusters (cf. Figure 8(b)). BIRCH
cannot successfully detect the clusters in the dataset, because they are not limited to
uniform sizes and shapes. For CURE, clusters with few objects are difficult to detect
(cf. Figure 8(c)). Similarly, due to the data sampling, rsekFCM has difficulties finding
low-density clusters. The reason is that clusters of small size or low density tend to

1Synchronization-based clustering algorithms have already demonstrated their advantages over most tra-
ditional clustering algorithms such like DBSCAN, EM, KMeans, Meanshift, and Affinity Propagation (see,
e.g., previous experiments with Sync [Bohm et al. 2010; Shao et al. 2013a]).
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be ignored, since the sampled data might not maintain the cluster structure anymore.
In addition, many cluster objects tend to be considered as outlier objects due to the
effect of sampling and partitioning (e.g., a singleton cluster is regarded as noise for
outlier handling in CURE). In comparison to these established scalable clustering
algorithms, CIPA and Sync correctly detect all clusters and noise points driven by
the synchronization principle(cf. Figure 8(a)). In the experimental results shown in
Figure 8(d)—(f), we present the input for the final clustering with PA representations, CF
for BIRCH and data representative points for CURE. As evident from Figure 8(d), PAs
and outlier objects maintain the cluster structure of the original data. For BIRCH, with
CF-based statistical summarization, all outlier objects and cluster objects are regarded
in the same way, which results in difficulties of the final hierarchical clustering to
remove outliers. For CURE, the representative points of clusters of small size or low
density are missing due to its sampling and partitioning. For rsekFCM, prototypes
(blue squares in Figure 8(h)) have been obtained by clustering the sampled data. These
resulting prototypes are further transformed into a large dataset for final clustering.
However, due to the sampling effect and limitation of K-Means, it tends to fail if the
dataset consists of clusters with different densities and shapes.

Properties inherited from synchronization-based clustering. To investigate whether
CIPA maintains the desirable properties of synchronization-based clustering, we com-
pare the consistency between CIPA and Sync. First, for all mentioned datasets (DS1,
DS2, and DS3), CIPA achieves the same clustering results as Sync with the same
interaction ranges, which allows detecting clusters of arbitrary number, shape, size,
even in the presence of noise (Figures 5, 7, 8). We further check whether the PAs re-
ally represent the cluster structure at each level, and thus the purity for each PA is
examined. It is interesting to note that for all three datasets, the purity of all PAs is
exactly 100%, which means that each PA really envelops the objects in a cluster for
the three datasets. Therefore, with the PA representation, the desirable properties of
synchronization-based clustering are preserved.

6.2. Real-World Datasets

In this section, we compare the performance of all scalable clustering algorithms
on real-world data publicly available at the UCI machine learning repository
(http://archive.ics.uci. edu/ml).

Wine data. The wine dataset is the result of a chemical analysis of wine grown
in the same region in Italy, but derived from three different cultivars. The analysis
determined the quantities of 13 constituents found in each of the three types of wine.
For this small dataset, with 50 instances as the partition size, CIPA detects three
clusters and 19 outliers. The cluster purity is 95.5%, and only four instances from type
2 are wrongly clustered together with instances from type 3. As the dataset is very
small, BIRCH, CURE, and rsekFCM work on the original data with 2 = 3 and other
default parameters. Many instances for BIRCH, CURE, and rsekFCM are wrongly
clustered, resulting in a cluster purity of 69.1%, 70.8%, and 67.4%, respectively.

Shuttle data. The shuttle dataset contains 58,000 instances, which are labeled by
seven classes. Each instance is described by nine numerical attributes. CIPA detects 9
clusters, and 77 instances are viewed as noise, resulting in good values of NMI = 0.421
and Purity = 91.0%. For BIRCH, with £ = 7, most instances are wrongly clustered with
NMI = 0.001 and Purity = 78.6%. Similarly, CURE hardly finds reasonable clusters,
with slightly better values of NMI = 0.008 and Purity = 78.6%. rsekFCM also difficult
to find reasonable clusters on this dataset with low cluster quality (NMI = 0.233
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Fig. 9. The clustering results of CIPA on intrusion data. Left: the cluster purity of each cluster; Right: the
major type of attack in each cluster and corresponding number of instances.

Table 1. Performance of Different Scalable Clustering Algorithms on Real-World Datasets

CIPA BIRCH CURE rsekFCM
Data #Obj |#dim| NMI | ARI | Pur | NMI | ARI | Pur | NMI | ARI | Pur | NMI | ARI | Pur
Wine 178 13 |0.703/0.768]0.955( 0.399 | 0.352 |0.691| 0.374 | 0.401 {0.708| 0.352 | 0.320 |0.674

Shuttle | 58,000 9 10.421]0.389/0.910{ 0.001 | 0.002 |0.786| 0.008 | 0.006 |0.786| 0.233 | 0.313 |0.827
Covtpe | 581,012 | 54 |0.136|0.052|0.651| 0.057 | —0.029|0.498| 0.068 | 0.013 | 0.502 | 0.064 | —0.015|0.500
Kddcup |4,898,431| 34 |0.756(0.918]0.989|2xe~*| 1xe* |0.573|5xe* |4xe *|0.574|3xe~*| 2xe~* [0.573

and Purity = 82.7%). As BIRCH, CURE, and rsekFCM have to work on sampled or
summarized data, the quality of the clustering cannot easily be ensured.

Coutype data. The Covtype dataset containing 581,012 instances describes seven
forest cover types on a 30 x 30 meter grid with 54 different geographic measurements.
CIPA discovers 75 clusters, and several classes are split into multiple clusters (NMI
= 0.136 and Purity = 65.1%). For BIRCH, with 2 = 7, most instances are wrongly
clustered with NMI = 0.057, Purity = 49.8%, while CURE achieves a cluster quality of
NMI = 0.068, Purity = 50.2%. Like BIRCH and CURE, rsekFCM yields similar results
with NMI = 0.064, Purity = 50.0%.

Network intrusion data. The KDD-CUP’99 intrusion detection dataset consists of two
weeks of raw TCP dump data (4,898,431 instances) for a local area network simulating
a true Air Force environment with 22 occasional attacks. There are three major classes
of the dataset: neptune (1,072,017 instances), smurf (2,807,886 instances), and normal
(972,781). 34 numerical attributes out of the total 42 attributes have been selected for
clustering. CIPA detects 49 clusters and 3,644 outliers, which achieves a good cluster
quality of NMI = 0.756, Purity = 98.9% on the large dataset. The purity of each cluster
and the major types of clusters are further illustrated in Figure 9. BIRCH, CURE, and
rsekFCM (& = 23) hardly find meaningful clusters, with quite low values of NMI, ARI,
and Purity.

The performance on these four datasets is summarized in Table II. From this table,
we notice that the performance of BIRCH, CURE, and rsekFCM is still not comparable
to CIPA. Although a larger number of resulting clusters usually leads to relatively lower
NMI and ARI values and higher cluster purities, CIPA (yielding more clusters than
the true number of clusters) still largely outperforms BIRCH and CURE with respect
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Fig. 10. The effect of the interaction range.

to NMI and ARI on all datasets.? For larger datasets such as Covtype or Network
Intrusion, the benefits of CIPA are more pronounced.

6.3. Sensitivity to Parameters

In this section, we perform sensitivity analysis for CIPA with respect to the interaction
range ¢, random partitioning, and partition size, on the dataset DS3 used in Figure 8.

Interaction range. As stated in Section 3.6, there are two stages in the algorithm at
which the interaction range ¢ needs to be specified. For the first stage, we examine the
different values for ¢ with 2 = 3 to 10. CIPA obtains the same clustering results. How-
ever, when we use € with &£ = 20, the quality of the clustering suffers due to many outlier
objects or objects in different close clusters that are synchronized together by the large
interaction range. To evaluate the estimated interaction range for the final clustering,
Figure 10(a) plots the interaction range € with respect to the quality of the clustering. It
is evident that there is a wide suitable interaction range for our synchronization-based
clustering on this dataset. Figure 10(b) plots the distances (Near Dists) from PAs on
the final level. By computing the interaction range based on Equation (4), CIPA allows
finding a good ¢ (the red dashed line) with high-quality cluster results. In addition,
Figure 11 shows the clustering results on the dataset consisting of multiple clusters
with different densities. Unlike DBSCAN, CIPA allows detecting clusters with multi-
ple densities in a dataset with one interaction range. The reason lies in its dynamic
clustering process: Objects in clusters with multiple densities will synchronize together
within the same interaction range.

Partition size. We assess the effect of the partition size on clustering with different
settings ranging from 2 to 30,000. Figure 13 shows the clustering results based on
different evaluation measures. Even on the two extreme cases: two objects in each
partition and the dataset is only split into two subsets with a partition size up to
20, CIPA still achieves success. However, as expected, the performance becomes more
stable with a partition size up to 20.

Random partitioning. For evaluating the impact of random partitioning, we cluster
the dataset for 100 times and check the differences of clustering results based on
the evaluation measures. Interestingly, the clustering results turn out to be not very

2Note that NMI and ARI do not necessarily get better with increasing cluster numbers; they usually peak
around the correct number of classes. Discovering more clusters than necessary should lead to worse perfor-
mance, which is not observed here.
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sensitive against the random partitioning (NMI = 0.999 + 2.64e %, ARI = 0.999 +
2.55e75, Purity = 0.999+4.27¢~?). In addition, to further check the random partitioning
for clustering, we plot the obtained PAs and outlier objects before final clustering (see
Figure 12). Due to space limitations, only six plots are given. From these plots, it is
clear that the cluster structure for all plots is maintained and almost the same. The
reason behind this is the local and dynamical synchronization-based clustering.
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6.4. Scalability Experiments

In this section, we compare the scalability for different scalable clustering algorithms.
In addition, the speed-up of the GPU parallel implementation of CIPA is further
assessed.

CIPA vs Sync. In Figure 14(a), we first investigate the runtime of CIPA compared
to Sync with respect to database size ranging from 1,000 objects to 10,000 objects. It

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 1, Article 5, Publication date: July 2016.



Scalable Clustering by lterative Partitioning and PA Representation 5:21

2000 - _
-=-CIPA 201 a-cipa
1600 | _o—cIpA-CUDA 200 -| —+—CIPA-CUDA
§ 1200 élso .
) )
E 800 - € 100 -
= =
400 - 50 -
0 0 e/_.—/
100K iM 10M 100M 8 16 24 32 40 48
Database Size Dimensions

Fig. 15. Speed-up w.r.t. GPU implementation.

indicates that the larger the database size, the higher the speed-up of the clustering
(e.g., approximately 100 times faster for the 10,000 objects).

Runtime w.r.t. database size. To assess the scalability of CIPA with respect to
database size, we generate three 2D synthetic data with different database sizes (one
hundred thousand objects, one million objects, and ten million objects). Figure 14(b)
shows the running time for different scalable clustering algorithms. The running time
of CIPA is comparable to BIRCH and CURE when the database size is smaller than one
million objects and is much faster when the size of the database increases, especially
for CURE and rsekFFCM. The reason is when the data size is very large, BIRCH needs
to re-build the CF-tree again and again, while the sample size (2.5% of original dataset)
is still large for CURE and rsekFCM due to its time complexity of O(N? - log(N)). Fig-
ure 14(d) further plots the running times of different algorithms on the real-world
kddcup dataset.

Runtime w.r.t. dimension. To assess the scalability of CIPA with respect to dimension-
ality, five synthetic datasets containing one million objects with different dimensions
are generated (ranging from 8 to 48). All three algorithms show a linear running time
against the number of dimensions (Figure 14(c)). CIPA is faster than BIRCH and
comparable with rsekFFCM, while CURE is faster than BIRCH and CIPA due to the
advantage of the sampling technique (only 25,000 objects in the sampled dataset).

Speed-up w.r.t. GPU implementation. To further assess the speed-up of CIPA with
GPU, we implement CIPA-CUDA on the following platforms:

—CPU: Intel Xeon X5650 Dual Hex-Core, 96GB RAM, java 1:6:0 27 in OpenJDK 64-Bit
Server VM (build 20.0-b12) with multi-threading enabled (i.e., our CPU implemen-
tation uses 12 threads).

—GPU: Nvidia Tesla K20c with 5GB RAM, CUDA version 5.0, attached to the same
workstation as mentioned for the CPU.

Figure 15(a) shows the performance comparison for clustering four 2D synthetic
datasets with different data sizes ranging from 100K to 100M (1K = 10%, 1M =
10%) on a logarithmic scale. Overall, CIPA-CUDA achieves an average speed-up of
around 15 compared to multi-threaded CPU implementation CIPA w.r.t. database size,
and the benefits of CIPA-CUDA are more pronounced with increasing database size.
Figure 15(b) plots the running times for synthetic datasets containing one million
objects against different dimensions ranging from 8 to 48 (with a step size of 8). CIPA-
CUDA achieves an average speed-up of 13 compared to the CPU implementation of
CIPA.
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7. DISCUSSION AND CONCLUSIONS

The proposed method, CIPA, builds upon PA representations and divide-and-conquer.
Scaling up synchronization-based clustering with the divide-and-conquer strategy is
a natural fit, as PAs preserve local cluster structure well, even in the case of sparser
densities as created by random sampling. Many other clustering algorithms would re-
quire a suitable geometric division of the feature space, which is hard to define and
perhaps computationally hard to find. Although a PA can be viewed as a special form
of summarization in a strict sense, it largely differs from the statistical summarization
of objects as, e.g., by CF in BIRCH. One main difference is the PA represents the local
cluster structure instead of summary statistics. Although one might expect differences
between CIPA and SynC (with and without PA representations), the consistency of the
results turns out to be surprisingly high. One other attractive property of CIPA is its
suitability for parallelization on various technical platforms. One current limitation
of CIPA is its focus on continuous data. Since data points are considered as phase
oscillators in a feature vector space, the generalization to discrete or mixed-type data
seems not straightforward. In comprehensive experiments, we have shown that CIPA
outperforms state-of-the-art scalable clustering methods in computing accurate clus-
ters (labeled data) and that it scales up favorably in the large. In future work, we are
planning to focus on synchronization-based mining of complex network data and data
visualization techniques based on simulated object movements.
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