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* Gaussian Network Models
— Properties of Multivariate Gaussians

1. Operations of Gaussians (i.e. marginalization,
conditioning)

2. Independencies in Gaussians

— Gaussian Bayesian Networks

— @Gaussian Markov Random Fields
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Multivariate Gaussians : @%ﬂ&!ﬁi@%ﬁi

e Multivariate Gaussians

1 1 Ty—1
pla) = s e | 5@ - )" e - )]

, where |X| is the determinant of £ which should be positive definite.

* |Information matrix and information form

Llet J=Y"1 thus Information matrix
1 Ty—1 1 T
_5(33_“) 2 (%—p,) = —5(33—#) J(:B—p,)
and = —% [z Jx — 22" Ju+ p" Jpu].
Potential vector

1 ,
p(x) xexp |—=xl Tz + (Jp)' |-
2 Information form
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Properties of Gaussians — operations : @%ﬂ&!ﬁiﬁ%ﬁi

e A little trick -- ‘Completing the square’

-- A Gaussian distribution is totally determined by its u& %, i.e. the quadratic form

— ,’La L Eaa Eab
H (Hb) 2= (zba Ebb) '

Let X ~ N(x|pu,X) X = (X“)

Xp
Consider :
1 T —1 1 T —1 T —1
—§(X—H) » (X_“’):_ixz X +x" X+ const (1)
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w'v For example

an — A;al Hap — 2}a\b {Aaaﬂa - Aab(xb - P“b>}
= po — Ag) Aas(xp — py)




Data Mining Lab

Properties of Gaussians — operations : @%ﬂ&!ﬁi@%ﬁi

* Operation — conditioning & marginalization :

Given a joint Gaussian distribution A/(x|p, ¥) with A = 3~ and

_ Xa _ l"’a
X = : —
Eaa 23ab Aaa Aab
Y = A = :
(Eba Ebb) ’ (Aba Abb)
Conditional distribution:

p(Xalxp) = N(x|pap: Auy)
Holp = Hq — Aa_,alAab(Xb - u‘b)

Marginal distribution:

p(Xa) — N(Xa‘“aa Eaa)-



Properties of Gaussians — Independencies: /@\;&gﬁﬁ;@g‘gmg
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 The relationship between variables
» Determined by covariance matrix .

\ 4

Theorem 7.3 (without proof): Let X = X;, ..., X, have
a joint normal distribution N (u; X). Then X; and X; are

iIndependent if and only If 2;; = 0.
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Properties of Gaussians — Independencies: /@\;ﬁg;ﬁ;@g‘gmg

 The relationship between Gaussians and graph
structures
» Independence structure in the distribution is
apparent in the information matrix.

\ 4

Theorem 7.3 (without proof): Consider a Gaussian distribution p(X,...,X,)
=N (u; X),and let ] = 27! be the information matrix. ThenJ;

\ Indicating Pairwise Markov independencies

Information matrix ” A minimal I-map Markov network for p
defines
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Gaussian Bayesian Networks: @?ﬂ&!ﬁi@%‘@ﬁﬁi

e Conditional -> Joint:

Let Y be a linear Gaussian of its parents X1, ..., X:

/

(v [2) = N (o + 87 @;0%)

Assume that X+, ..., Xy are jointly Gaussian with distribution N (u;Y). Then:

/ 7

o The distribution of Y is a normal distribution p(Y') = N (py; 0y) where:

py = Bo+ B n
oy = o’ +p'56

 The joint distribution over { X ,Y } is a normal distribution where:

k
COU[X@'; Y] = Z szi,j-
j=1

e Joint -> Conditional (the same as above)
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Gaussian Markov Random Fields: @%ﬂ&!ﬁ?ﬁ%‘@ﬁﬁi

e @Gaussian distribution -> Pairwise Markov networks:

» Note that the Pairwise Markov independencies are indicated
by the information matrix of a Gaussian distribution.

* Node potentials are derived from h and J;;;
* Edge potentials are derived from the off-diagonal entries of
the information matrix.




Gaussian Markov Random Fields:

f \?ﬂ&!ﬁ?)’*hé
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* Pairwise Markov networks (Gaussian Markov
networks ) -> Gaussian distribution :

Consider any pairwise Markov network with quadratic node and
edge potentials.

EZ(.’E@) = d% + d% T; + d% .ZUZ
. . . 1,] 2
€ij(xi, xj) = aoo T %197@ T alo% T anxz% T a 5’7 T Ay T

\ 4

1
p(x) = eXP(—§$TJCB + hTa:) — ] should be positive definte !

There is no simple way to check whether the MRF is valid!
But we do have some simpler sufficient conditions (see p255, 256).
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* The Exponential Family
— Exponential Families

— Factored Exponential Families
* Product Distributions
* Bayesian Networks

— Entropy and Relative Entropy

— Projections
* M-projection

* |-projection




Exponential Family -- definition:
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Let X be a set of variables. An Exponential Family
P over X is specified by four components:

e Alsufficient statistics function 7|from assignments to X to R".

e A parameter space that is a convex set © C RM of legal parameters.
e A natural parameter function t from R™ to R¥.

e An auxiliary measure A over X.

Each vector of parameters @ € © specifies a distribution Pg in the family as

Po(€) = ﬁA(@ exp {(£(6). 7(€)))

where (t(0),7(£)) is the inner product of the vectors t(@) and 7(£), and
Z A() exp {(t(8),7(£)) }




Data Mining Lab

Exponential Family — an example: @?ﬂ&!ﬁiﬁ%ﬁi

Consider a Gaussian distribution over a single variable. Recall that

Plz) = \/zl_m exp{—($2;§)2 }

() = (z,2°) 1

7 1
t(p,0?) = (L, ——

2
Z(p,0%) = V2moexp {u—z} :
20

We can easily verify that

1
Jr e L), 7))}

Read Linear Exponential Families in PGM Ch8.2.1 by yourself ©

P(x) =
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Factored Exponential Families: @?ﬂ&!ﬁi@%‘@ﬁﬁi

* Exponential factor family

An (unnormalized) exponential factor family ® is defined by 7, t, A, and © (as in the exponential
family). A factor in this family is

0o(S) = A(E) exp {(t(8), 7(£))} - o

 Family composition

Let ®1,...,®; be exponential factor families, where each ®; is specified by t;, t;, A;, and
©,. The composition of ©1,..., Py is the family Py x ®y x --- x Oy parameterized by 0 =
0106050 ---00, € O Xx Oy X - X O, defined as

Po(€) x [T 00,(6) = (H A@(a) exp {Zm(ei), n<§>>}

7

where ¢g, is a factor in the i'th factor family. 0

See examples in PGM Ch8.3.2 ©




Entropy and Relative Entropy:
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e Definition

Hp(X) = Ep[logp ] ZP logp)

* A measure of the amount of “stochasticity ” or “noise” in the
distribution;

« The number of bits needed, on average, to encode instances
In the distribution.

Distribution mass is on a few
A low entropy = instances.

A high entropy = A more uniform Distribution.




Relative Entropy: @ s e
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Consider a distribution Q and a distribution Py in an
exponential family defined by T and t. Then

D(Q|Fe) = —Hq(X) — (Eq[7(X)],t(6)) + In Z(6)

e Definition

* A measure of distance between two distributions.

 Relative entropy is not symmetric (i.e. D(P||Q) #
D(QIIP))

* There are more elegant results if the two distributions are
from the same distribution family (i.e. exponential family).
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Projections -- motivation : @%ﬂ&iﬁiﬁ%‘@ﬁﬁi

e Motivation

Finding the distribution, within a given exponential
family, that is closest to a given distribution in terms
of relative entropy.

Tk
; An orthogonal projection
of a vector in R3 .
A
Az - . .
i Finding the closest vector
q- .
¥ on a given subspace.
A,
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Projections -- definition: @%ﬂ&!ﬁ?ﬁ%ﬁi

* Definition
Let P be a distribution and let Q be a convex set of distributions.

e The I-projection (information projection) of P onto Q is the distribution

i .
Q' = arg min D(Q| P).
arg min D(Q[P)

e The M-projection (moment projection) of P onto Q is the distribution

M .
QM = arg min D(P|Q).
arg min D(P|Q)




Projections -- comparison: mmﬂiﬁiﬁﬁiﬁﬁi

Weight (distribution of P) is known, find
optimal Q. (consider mixed Gaussian. )

Finding Q that minimize D(P|Q) = —Hp(X) + Ep|— lle(X)]

P is known, find optimal weight (distribution Q). (consider mixed
Gaussian. Always give the largest weight to the x with largest P(x).)

Finding Q that minimize  D(Q|P) = —Hg(X) + EQ[—{ln P(X)]

* M-projection

* |-projection

Lower variance (depending on H);
Encodes a preference for to
regions where P(X) is large.

—nQ(x)

Smaller value of —InQ (x)

are expected to have larger
weight when computing the
expectation according to P.

/.

» Higher variance;

» A more comprehensive
capture of P.
I'g

*. I-projection

PR i .
*. \ M-projection

Q)




Projections -- comparison: \%ﬂ&!ﬁﬂ’*hé
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* M-projection : Although the M-projection attempts to matcht e
main mass of P, its high variance is a compromise to ensure that it
assigns reasonably high density to all regions that are in the support
of P.

 I-projection: The first term brings a penalty on small variance. The
second term, i.e. Q[—In P(X)], encodes a preference for assigning
higher density to regions where P(X) is large and very low density
to regions where P(X) is small.

The M-projection attempts to give all
assignments reasonably high probability,
whereas the I-projection attempts to focus
on high-probability assignments in P
while maintaining a reasonable entropy.

I[-projection

PRERN
N .
\\M—pr()Jectlon




Projections -- comparison:

1

22

0.5

p=Blue, g=Red

M-projection
(maintains the mean)

/ SiEISIESCIS =
\ > , Data Mining Lab

ChilO

p=Blue, g=Red (two equivalently good solutions!)

I-projection
(fails to maintains the mean)
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More About M—Projection (moment matching): @\gﬂgjﬁ;@g‘ggﬁg

A Space of all
A, distributions
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More About M -- Projection (moment matching): @;ﬁg;ﬁ;@ggﬁg

Theorem 8.6

Let P be a distribution over X, and let Q be an exponenltial family defined by the functions 7(&)
and t(0). If there is a set of parameters 0 such that Eg,|T(X )] = Ep|[T(X)], then the M-projection

of P is Qg.
Proor Suppose that Ep[7(X)] = Eg,[7(X)], and let 8" be some set of parameters. Then,

D(P|Qg') — D(P|Qs)

= D(Qe|Qs) = 0.
We conclude that the M-projection of P is Q.




More About M -- Projection (moment matching): f
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Space of all
distributions

Paramet ttics

« Each parameter corresponds to a distribution, which in turn corresponds to
a value of the expected statistics.

« The function ess maps parameters directly to expected statistics.

« |If the expected statistics of P and Qg match, then Q4 is the M-projection of

P.
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More About M -- Projection (moment matching): @;ﬂﬁjﬁ;@g‘gﬁgg

Exponential
family

Parameters Distributions Expected statistics

Let s be avector. If s € image(ess) and ess is
invertible, then M — project(s) = ess™1(s).
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More About M -- Projection (moment matching): @gyﬁjﬁ;ﬁg‘ggﬁg

A gentle example:
What is the best Gaussian approximation (in the M-projection
sense) to a non-Gaussian distribution over X?

Consider the exponential family of Gaussian distributions. Recall

that the sufficient statistics function for this family is t (x) =
(x,x?). Given parameters 8 = {u, 82), the expected value of 7 is:

ess((p, 0°)) = Eq, , [7(X)] = ( p,0° + p?).

« For any distribution P, Ep[t (X)] must be in the image of this
function (see exercise 8.4).
- for any choice of P, we can apply theorem 8.6.

« By inverting the ess function

M-project((s1, 52)) = ess ' ({s1,52)) = (51,52 — 57).

« By substituting s; and s, with Ep[X] and Ep[X?], Thus, the estimated
parameters are the mean and variance of X according to P, as we would expect.
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Thanks
Q& A?




