Moving Together Pattern -- an overview

PRESENTED BY ZHAOYI, UESTC

xiaoFine@live.com
Outline

1. Moving Together
 - Categories
 - Application
 - Earlier Models

2. Gathering Pattern
 - Improvement
 - Implementation

3. Extension Models
 - Urban black holes
Introduction

Part 1

Group Moving Patterns

- Company Patterns
- Aggregation Patterns
- Divergence Patterns
- Leadership Patterns
- Popular Patterns
- Mutant Patterns

So.......where’re Moving Together Patterns?
Relative Motion Patterns

• To identify similar movements in a collection of MOPs (moving point objects)
• REMO analysis
 • A transformation of lifeline data to a REMO matrix featuring motion attributes (i.e. speed, acceleration or motion azimuth)
 • Match of formalized patterns on the matrix
Part 1 Relative Motion Patterns

An example:
Basic Motion:

Constance: sequence of equal motion attributes for r consecutive timestamps

Concurrence: incident of n MPOs showing the same motion attributes at time t

Trend-setter: one trend-setting MPO anticipates the motion of n others
Spatial Motion Patterns

Basic Motion + Spatial Constraints (proximity measure)

- The maximal length of the cumulated distances to the mean or median center
- The average length of the Delaunay edges of the group
- MBB (i.e. a ellipse)
- The indication of a maximal border length of the convex hull
Part 1 Relative Motion Patterns

Flock:

Concurrence + Spatial constraints
Leadership:

Trend-setter + Spatial constraints
Aggregation/Disaggregation Motion Patterns

- **Convergence**: Set of m MPOs at interval i with motion azimuth vectors intersecting within a range R of radius r
- **Encounter**: Actually meeting within R extrapolating the current motion
- **Divergence**: The opposite of the Convergence
- **Breakup**: The opposite of the Encounter
An example: *Convergence without cluster*
Drawbacks:
• Hard to define an absolute distance between two objects
• Hard to define r (i.e. Lossy-flock problem)
• A single r is unrealistic
 Density-Based Motion Patterns

Allow the capture of trajectories of arbitrary shape

- **Convoy**: Density-Based *Flock*
- **Swarm**: Time-Relaxed *Convoy*
- Moving Cluster: A sequence of spatial cluster
Moving Cluster:
A set of objects that move close to each other for a time duration
Part 1 Density-Based Motion Patterns

Flock:
- A disc of rigid size
- K consecutive timestamps

Convoy:
- Dense-based clustering

Swarm:
- K (non-consecutive) timestamps
Part 1
Density-Based Motion Patterns

Dense Area Detection: Drawbacks
Part 2 Gathering Patterns

- Key Attributes
- Definitions
- How does it work
• Scale: A gathering typically involves a relatively large number of individuals
• Density: Those individuals forms a dense group
• Durability: It should last for a certain time period continuously
• Stationariness: The geometric properties of the group is relatively stable
• Commitment: At any time of the gathering, there exist several dedicated members who stick to the group for a certain time (possibly non-consecutive)
Part 2 Definitions

• The trajectory of a moving object
 \[o = \langle (p_1, t_1), (p_2, t_2), \ldots, (p_n, t_n) \rangle \]
 where \(p_i \in \mathbb{R}^2 \) is the geo – spatial position sample at \(t_i \in \mathcal{T}_{DB} \)

• Directly density-reachable
 A point \(p \) is directly density reachable from a point \(q \) w.r.t a given distance threshold \(\epsilon \) and a integer \(m \), if
 \[p \in N_\epsilon (q) \text{ and } |N_\epsilon (q)| \geq m \]
 where \(N_\epsilon (p) = \{ q \in S | D(p, q) < \epsilon \} \)
• Snapshot cluster

The snapshot cluster c_t is
- a non-empty subset of objects $\mathcal{O} \in \mathcal{O}_{DB}$
- $\forall o_p, o_q \in \mathcal{O}, o_p(t)$ is density-connected to $o_q(t)$
- \mathcal{O} is maximal
• Crowd

A crowd C_r is

- A sequence of snapshot cluster at consecutive timestamps
- The lifetime of C_r is no less than k_c
- There should be at least m_c objects at any time
- The distance between any consecutive pair of clusters is not greater than δ
• Gathering

A crowd C_r is called a gathering iff there exists at least m_p participators in each snapshot cluster of C_r.

• Participator

An object o is called a participator iff it appears in at least k_p snapshot cluster.
Definitions

$k_p = 2, m_p = 3$

<table>
<thead>
<tr>
<th>object</th>
<th>c_1</th>
<th>c_2</th>
<th>c_4</th>
<th>#</th>
<th>object</th>
<th>c_1</th>
<th>c_3</th>
<th>c_4</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>o_1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>o_2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>o_2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>o_3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>o_3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>o_4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>o_4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>o_5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>o_5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>o_6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>o_6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td># Par.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td># Par.</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Data Mining Lab | UESTC
Part 2

How does it work

1. Snapshot cluster
2. Crowd discovery
 - Indexing clusters with R-tree/grid
3. Gathering detection
 - TAD
4. Updating
Crowd Discovery:

- C_r is said to be closed if it has no super-crowd
- Longer gathering can exist in super-crowd if the crowd is not closed
- Computing Hausdorff distance is high-cost!
Indexing cluster with R-tree:

- $d_{\min}(M(c_i), M(c_j)) \leq d_H(c_i, c_j)$
- Index the MBRs of the cluster in C by a R-tree

$O(MN) \rightarrow O(\log_M N)$
Indexing cluster with R-tree: Drawbacks

- R-tree still costs a lot in construction and maintain
- MBRs may not capture the distribution of clusters
Indexing cluster with Grid:

- Partition the space into by a grid
- The side length of each cell equals to $\frac{1}{\sqrt{2}} \delta$
- Maintain a cell list for each cluster and a inverted list for each cell
- **Affect Region**: A cell g_{ab}’s AF is the set of cells whose minimum distance with g_{ab} less than δ
Gathering Detection

The downward closure property doesn’t hold anymore

• TAD
• BVS
• Discovering gathering incrementally
Part 2 Gathering Detection

TAD (Test-and-Divide)

- The gathering output by TAD are closed
Part 2 Gathering Detection

TAD(Test-and-Divide) \[k_p = k_c = 3, \quad m_p = m_c = 3 \]

<table>
<thead>
<tr>
<th></th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(c_4)</th>
<th>(c_5)</th>
<th>(c_6)</th>
<th>(c_7)</th>
<th>(c_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(o_1)</td>
<td>01</td>
<td>01</td>
<td></td>
<td>01</td>
<td>01</td>
<td></td>
<td>02</td>
<td>02</td>
</tr>
<tr>
<td>(o_2)</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td></td>
<td>03</td>
<td>03</td>
<td>03</td>
</tr>
<tr>
<td>(o_3)</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>03</td>
<td>03</td>
</tr>
<tr>
<td>(o_4)</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>(o_5)</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td></td>
<td>06</td>
<td></td>
<td>06</td>
<td></td>
</tr>
</tbody>
</table>
Part 2 How does it work

BVS (Bit Vector Signature)

<table>
<thead>
<tr>
<th>$B(o_1)$</th>
<th>01101100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(o_2)$</td>
<td>11110011</td>
</tr>
<tr>
<td>$B(o_3)$</td>
<td>11010111</td>
</tr>
<tr>
<td>$B(o_4)$</td>
<td>10111111</td>
</tr>
<tr>
<td>$B(o_5)$</td>
<td>01110000</td>
</tr>
<tr>
<td>$B(o_6)$</td>
<td>00001100</td>
</tr>
</tbody>
</table>
Part 2 How does it work

TAD & BVS
• Test Step
 • Count the 1 bits in $B(o)$ with bit operation

1) Let $m_1 = 01010101$,
 $$x = (x \& m_1) + ((x \gg 1) \& m_1) = 01011000$$
2) Let $m_2 = 00110011$,
 $$x = (x \& m_2) + ((x \gg 1) \& m_2) = 00100010$$
3) Let $m_4 = 00001111$,
 $$x = (x \& m_4) + ((x \gg 1) \& m_4) = 00000100$$

m_1, m_2 and m_3 are called masks
Part 2 How does it work

TAD & BVS

• Divide Step
 • No need to process BVSs of non-participators
 • Extract clusters by AND operation and *masks for clusters* i.e. 11110000
Part 2

Discovering gathering incrementally

- New database

\[\mathcal{O}'_{DB} = \mathcal{O}_{DB} \cup \mathcal{O}_{new} \]

- New time domain

\[\mathcal{T}'_{DB} = \mathcal{T}_{DB} \cup \mathcal{T}_{new} \]
Part 2 How does it work

Discovering gathering incrementally

• Crowd Extension:

Given a closed crowd $C_r = \{c_i, ..., c_j\}$ in O_{DB}, if its last cluster is not at the most recent time point of T_{DB}, then C_r cannot be extended into O_{DB}'.
Discovering gathering incrementally

- Crowd Extension:

<table>
<thead>
<tr>
<th></th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>t_5</th>
<th>t_6</th>
<th>t_7</th>
<th>t_8</th>
<th>t_9</th>
<th>t_{10}</th>
<th>t_{11}</th>
<th>t_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>c_2</td>
<td>c_3</td>
<td>c_4</td>
<td>c_5</td>
<td>c_6</td>
<td>c_7</td>
<td>c_8</td>
<td>c_9</td>
<td>c_{10}</td>
<td>c_{11}</td>
<td>c_{12}</td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>c_2</td>
<td>c_3</td>
<td>c_4</td>
<td>c_5</td>
<td>c_6</td>
<td>c_7</td>
<td>c_8</td>
<td>c_9</td>
<td>c_{10}</td>
<td>c_{11}</td>
<td>c_{12}</td>
<td></td>
</tr>
</tbody>
</table>
Part 2 How does it work

Discovering gathering incrementally

• Gathering Update:
 • \(IC(C_{r_{new}}) \cap C_{r_{old}} \subseteq IC(C_{r_{old}}) \)
 Invalid cluster \(C_{r_{old}} \) can be valid in \(C_{r_{new}} \)
 • Given an invalid cluster \(c_j \in IC(C_{r_{new}}) \) with \(j \leq n + 1 \), then any closed gathering \(G_r \subset \langle c_i, \ldots, c_{j-1} \rangle \) remains closed in \(C_{r_{new}} \)
 Closed gathering remain closed
Part 3 Extension Models

Urban Black Holes: STG(spatial-temporal Graph)
Urban Black Holes: STG(spatial-temporal Graph)
THANK YOU

PRESENTED BY ZHAOYI