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» The stories, formulas definitions in my speech you may
have heard thousand of times

» The 15t and 2" chapter is just an preface of probabilistic
graphical model
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» The true state of world is fundamental uncertainty
» We can’t figure out what makes the stock market fall

» To obtain meaningful conclusions, we need to reason not
just about what is possible, but also about what is
probable
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> \We want

 Take the available information and reach conclusions

* Develop a general suite of algorithms that apply any
model within a broad class

e Solve the problem of the noisy etc

* Good for your study



1.2 Structured Probabilistic Models

» Example

Flu

Hayfever

2*2*2%2%4=64

Season

Conghrstion

Muscle-Pain

©
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»Example

Independencies
(FLH|S)
(C LS|F H)
(M 1L HC|F)
(M LC|F)
Factorization
P(S,F.H,C,M)= P(S)P(F
P(H | S)P(C | F,H)P(M |
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»Example
“spring, no flu, hayfever, inus congestion, muscle pain”

* P(Season = spring)*

* P(Flu =false | Season = spring)*

* P(Hayfever = true | Season = spring)*
 P(Congestion = true | Hayfever = true; Flu = false)*

* P(Muscle Pain = true | Flu = false)

v’ 3+4+4+4+2 = 17
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» The property that variables tend to interact directly
only with very few others

e 1.It often allows the distribution to be written down
tractably

 2.The same structure often also allows the distribution to
be used effectively for inference — answering queries using
the distribution as our model of the world

e 3. This framework facilitates the effective construction of
these models



1.2 Structured Probabilistic Models

Representation

Core

2,3.1-2,41-2

.

~

Bayesian Networks
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1.2 Structured Probabilistic Models @ T~
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» Probability Distribution

® Event Spaces Q) Q={12,34,5,6} nunﬂﬂ

® Measurable events S

e ¢e5,QeS o _ ; A O
° va,ﬂES,CZUﬂES _{¢’{11 ’5}1{ 171y }1 }

e aecS,Q—-aeS S:{(I)’Q} nnnﬂm
® Probability distribution (Q,S) S >R

e VYaeS,Pla)=0

. P(Q)=1

e Va,feS,anf=¢=Plaup)=Pla)+P(H)
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e Conditional Probability P(c| 3) = P(g(“)ﬂ)
¢ . students with good grades p
[ students with high 1Q

®Chain rule

Pleyn..ne)=P()P(er, | )..P(ex, |ty M...r, ;)

good grades

® Random Variable Q — value
A=GradeA B =high

®Joint Distribution ¥ ={X.... X }—>P(¥)

®Marginal Distribution P(X)= Zy P(X,YV)

Intelligence
®Bayes’ rule low  high
A10.07 018 0.25
P(B| a)P(a) Grade | B | 0.28 0.09 || 0.37
Pla|f)=——7 5 cl0.35 0.03] 0.38
| 0.7 03 |1
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2.1 Probability Theory @) P
» Independence and Conditional Independence

® Independence

P(oc A PB) = P()P(B), P(ct | B) = P(g(;‘)ﬁ) ~P(a)
P(a| pB) # P(«)

Pa| B)=P(@)| P(8)=0,P|=(a L p)
(@Llp)=(BLa)

® Conditional Independence
® P(MIT | Stanford,GradeA) = P(MIT| GradeA)

(@ Lply)=Planply)=Plaly)P(B|7)
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2.1 Probability Theory @ I

» Independence properties

® Symmetry (X LY |Z)= (Y LX|2)
®Decomposition (X LYW[|Z)=(X LY]|Z)

®Weak union (X LY,W|Z)=(X LY |W,2Z)

® Contraction (X LW|Z,Y)&(X LY |Z)=(X LY,W|2Z)

®Intersection (X LY [ZW)&(X LW|Z,Y)=(X LY,W|Z)
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»Querying a Distribution

®Probability Queries

P(Y|E =e)
A:100% A:T5% A50% A:25% B:100%
. b:0% B:25% B:50% B:75% A:0%
O®MAP Queries
MAP(W | e) = argmax P(w, e) which bag?
7 aw ’ first:A,
second:A
.Margina| MAP Queries A:100% A:T75% A50% A:25% B:100%
b:0% B:25% B:50% B:75% A:0%
0.1 0.2 04 0.2 0.1
which bag?
first:A
second:A
MAP =p*p¥g
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» probability density function(PDF)

b
Pla< X <b)= /p(:r)dj:.

a

> Joint Density Functions

by b,
Play < X1 <byy.vvvan < X, < by) =]---/p(ml,...,mn)dml...dﬂ:n.

25 Ay

» Conditional Density Functions

P(Y |z)= 1111[1]P(Y r—e< X <zx+e).
e—
» Expectation Variance

Ep[X]=) z-P(x). Varp|X] = Ep (X — Ep[X])*|.



2.1 Probability Theory

» Chebyshev inequality
D[X]

2
E

P(| X —E[X]|z¢)<

¢ =ko,P(| X —E[X]]> ka)Sk—lz

Indicator function |, =1, A=true
E[I{A}] =P(A)

I <<: ()( o a')2
{Ix-alzb} — b2
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—>

x=a-b

Image courtesy of Jim Pitman, Omid Sol

ari and Xin Wang.
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» A graph is a data structure K consisting of a set of nodes
and a set of edges

» Node: X ={X1; ...;Xn} @ Q
» Edge:

B
) (n) ([
* undirected edge Xi—Xj (c D)—(&)
Xi is a neighbor of Xj
. . . (F— : ) I
* directed edge Xi -> Xj
Xj is the child of Xi Xi is the parent of Xj

Given a graph K = (X, £), its undirected version is a graph H = (X, ") where £’ = { X —Y
X=Y e} m
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(o)

(D

Let K = (X,€), and let X C X. We define the induced subgraph K[X] to be the graph (X, E’)
where £ are all the edges X =Y € & such that X,Y € X. m

A subgraph over X is complete if every two nodes in X are connected by some edge. The set X
is often called a clique; we say that a cligue X is maximal if for any superset of nodes ¥ O X,
Y is not a clique. |
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Ox® (8) @)

(a) (b) ()

Figure 2.4 Induced graphs and their upward closure: (a) The induced subgraph K[C, D, I]. (b) The
upwardly closed subgraph XT[C]. (c) The upwardly closed subgraph X ¥ [C, D, I].

»  ®

CC\‘ (D) @)

H—© T



22 Graphs @) BIEBETRE
> 2 2.3 Paths and Trails \ ’ Data Mining Lab

* Path
° Trail( Xi= Xit1 )

* A graph is connected if for every Xi, Xj there is a trail
between Xi and Xj

Ancestors X

Topological ordering

Let G = (X, &) be a graph. An ordering of the nodes X1, . . ., X,, is a topological ordering relative

d 4

to KC if, whenever we have X; — X; € &, then i < j. _
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»2.2.4 Cycles and Loops

 Cycle
* Directed acyclic graph (DAG)

* [Bayes]

Data Mining Lab

* Partially directed acyclic graph (PDAG) @ @
e (Chain graph)
 {A}, {B}, {C;D;E}, {F;G}, {H}, {I}

OO
I

®H—
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* Tree

* Forest
depth=13

e polytree E ;
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»2.2.4 Cycles and Loops

« Chord N
T ______“"}F-f*“n
C /
A
/NN

 Triangulated
 chordal graph
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