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-
An Outline;

* Graph (network) reconstruction by using
information diffusion

* Graph reconstruction by compressive sensing
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-
Network Reconstruction:

 Network Reconstruction Problem:

Given a network with missing edges, how is it possible to
uncover the network structure based on certain observable
quantities extracted from partial measurements ?

E.g.
* Biological systems : uncover the Protein interaction data;
* Social networks : the existence of missing data is almost

inevitable.
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-
State-of-the-art Methods :

e Using structural information :

Aaron Clauset, Cristopher Moore, and Mark Newman. Structural Inference of Hierarchies
in Networks. 2006.

Aaron Clauset, Cristopher Moore, and M E J Newman. Hierarchical structure and the prediction of
missing links in networks. Nature, 453(7191):98-101, 2008.

Myunghwan Kim and Jure Leskovec. The Network Completion Problem: Inferring Missing
Nodes and Edges in Networks. SIAM International Conference on Data Mining, pages
47-58, 2011.

Roger Guimer‘ and Marta Sales-Pardo. Missing and spurious interactions and the
reconstruction of complex networks. Proceedings of the National Academy of Sciences of
the United States of America, 104(51):20167-20172, 2007.

Steve Hanneke and Eric P Xing. Network Completion and Survey Sampling. Aistats,
5:209-215, 2009.

e Using non-structural information :

Kevin Bleakley, Gérard Biau, and Jean-Philippe Vert. Supervised reconstruction of biological
networks with local models. Bioinformatics (Oxford, England), 23(13):i57-i65, 2007.
Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring Networks of
Diffusion and Influence. 5(4), 2010.

Steve Hanneke and Eric P Xing. Network Completion and Survey Sampling. Aistats,
5:209-215, 2009.

Payam Siyari, Hamid R Rabiee, Mostafa Salehi, and Motahareh Eslami Mehdiabadi. Network
Reconstruction under Compressive Sensing. pages 130-143, 2012.
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E—————
Using diffusion information :

Inferring Networks of Diffusion and
Influence

Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas
Krause.
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S
General idea :

A method for tracing paths of diffusion and influence
through networks and inferring the networks over
which contagions propagate.
 Partially observed data
e Tree structure assumption and probabilistic model
*  Find optimal network by maximize the likelihood

A picture toillustrate
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S
Cascade Transmission Model :

* Probability of an individual transmission

1. Probability of infection : When a new node u gets infected, it
gets a chance to transmit the contagion to each of its currently
uninfected neighbors w, with some small probability .

2. Incubationtime: If the contagionis transmitted, we then sample
the incubation time --- how long after w got infected, w will get a
chance to infect its (at that time uninfected) neighbors.
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S
Cascade Transmission Model :

Probability of an individual transmission
Consider a pair of nodes zz and v, connected by a directed edge (zz, v),

and the corresponding hit times (¢,,)., and (&t.)-

I1f t,, << t, then P-Cu, v) = O
If t,, = t,
AR
P.(u,v) = P.(A,,) xe @
1
Or Pc(u, U) p— PC(AU,U) O( T
Au,v

1. When the cascade stops?
With probability (1 — f) the cascade stops, and never reaches v,

thus t,, = oo;
2. With probability 8, the cascade transmits over the edge (u, v), and the hit ¢
time t, 1s set to t,, + Ay, , where A, , is the incubation time that passed

between hit times ¢, and ¢,
Data Mining Lab Xinzuo Wango
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S
Cascade Transmission Model :

 Likelihood of a cascade spreading in a given tree pattern T

The likelihood P(c|T) that contagion ¢ in a grap G propagated in a
particular tree pattern 7' (Vr, E1).

Due to the assumption that cascades are trees, the likelihood 1s simply

Pc|T)= [] BP.w.v) [] A-p)

(u,v)eET ueVr,(u,x)eE\ET
PcT)=p'A-p) |] Pelw v)
(u,v)eET

The probability of the occurrence of a cascade is determined by the given tree
structure.

Since the cascade spread in tree pattern T, the contagion successfully propagated

along those edges. And, along the edges where the contagion did not spread, the
cascade had to stop.
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S
Cascade Transmission Model :

e (Cascade likelihood

A single contagion ¢ propagates in a particular tree pattern 7 € Tc(G) :

PlG)= Y PIT)P(TIG)
TeT.(G)

Assuming that all trees are a priori equally likely (P(T|G) = 1/|Tc(G)]),

The probability of a set of cascades C occurring in G

P(C|G) = [ P(cIG)
ceC

A Brief Introduction to Graph Reconstruction Data Mining Lab Xinzuo Wang



E—————
Estimating the Network :

 Estimating the Network that Maximizes the Cascade
Likelihood

Given a set of node infection times t. for a set of cascadesc € C,
a propagation probability parameter B and an incubationtime
distribution P_(u, v), find the network G such that:

A

G = argmax P(C|G)
G|<k

However, The time cost is too expensive !
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-
An Alternative Formulation :

« Compute an approximation of the likelihood of a
single cascade by considering only the most likely
tree instead of all possible propagation trees;

* Devising an algorithm that provably finds networks
with near optimal approximate likelihood.
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-
An Alternative Formulation :

1. Modeling external influence via €-edges
--- nodes may get infected for reasons other than the network influence.

For example,

* Inonline media, not all the information propagates via the network,
some is pushed onto the network by the mass media

* Similarly, in viral marketing, a person may purchase a product due to
the influence of peers (network effect) or for some other reason(e.g.,
seeing a commercial on TV)
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-
An Alternative Formulation :

1. Modeling external influence via g-edges

If there is no network edge between a node i and a node j in the
network, we add an g-edge and then node i can infect node j with
a small probabilitye. InthiswayENE, =@, EUE. =V %V

PcT)= || |]Pwv)

ucVyp veV

(BP.(t, —t,) ift, <t and (u,v) € E;NE (u, v)is network edge
eP.(t,—t,) ift, <t, and (u,v) e ErNE, (u,v)ise-edge

P(u,v)=31-8 ift, = oo and (u, v) € E\Er v IS not infected, network edge .
1—¢ ift, = oo and (u,v) € E;\E7r v is not infected, ¢-edge
LO else (z.e.,t, > t,).
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-
An Alternative Formulation :

1. Modeling external influence via €-edges

(a) Graph G on five vertices and four network (b) Cascade propagation tree T =
edges (solid edges). c-edges shown as dashed {(a,b), (b,c), (b,d)}
lines
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-
An Alternative Formulation :

2. Considering only the most likely propagation tree

PCIG =[] > PeD~]] max P|T).
eC

TeT.(G
ceC TeTAQ) STl
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]
Experimental Evaluation :

- Generating the minimum number of |C| cascades so that f~-fraction of
edges participated in at least one cascade |E;| = f|E|- These |C|
cascades generated the total of » edge transmissions, ji.e., average
cascade size is 7 /|C|-

Table II. Performance of Synthetic Data

Type of network f |C| r BEP AUC
0.5 388 2,898 0.393 0.29
0.9 2,017 14,027 0.75 0.67
Forest Fire 095 2,717 19,418 0.82 0.74
0.99 4,038 28,663 0.92 0.86
0.5 289 1,341 0.37 0.30

0.9 1,209 5,602 0.81 0.80
Hierarchical Kronecker 095 1,972 9,391 0.90 0.90
0.99 5,078 25,643 0.98 0.98
0.5 140 1,392 0.31 0.23
0.9 884 9,498 0.84 0.80
Core-periphery Kronecker 0.95 1,506 14,125 0.93 0.91
0.99 3,110 30,453 0.98 0.96

0.5 200 1,324 0.34 0.26
0.9 1,303 7,707 0.84 0.83
Flat Kronecker 095 1,704 9,749 0.89 0.88

0.99 3,652 21,153 0.97 0.97
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Experimental Evaluation :

Recall and Precision
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]
Experimental Evaluation :

e Performance of NETINF as a function of the amount of

cascade data
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]
Experimental Evaluation :

* Time Cost
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Network Reconstruction under Compressive
Sensing

Siyari, P., Rabiee, H. R., Salehi, M., & Mehdiabadi, M. E

Siyari, P., Rabiee, H. R., Salehi, M., & Mehdiabadi, M. E. (2012).
Network Reconstruction under Compressive Sensing, 130-143.
http://doi.org/10.1109/Sociallnformatics.2012.84
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S
General Idea:

1. Utilizing the cascade probability data from the diffusion of
an arbitrary type of information throughout the desired
networked data;

2. Then estimate the probability that a cascade can diffuse
over the network;

3. Finally, by formation of a linear system from the diffusion
process, we utilize the theory of CS in order to reconstruct
the network of interest.
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E——
Cascade Modeling :

* The conditional probability of observing cascade ¢ spreading from
utov

Au,v

P.(u,v) = PC(Au,v) = e a

* The likelihood of a cascade spreading in a given tree pattern T

P(c|T) = H BP(u,v) H (1—5)

u,vEET u€Vr,(u,z)EE\ET

e The probability that a cascade c can occur in the graph G

P(c|G) = Téna(XG)P(dT) P(T|G)
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E—————
Build Linear System :

P(c|G) = TénTa(%) P(c|T) P(T|G)

taking log from both sides of this equation, we can approximate it as
the inner product of two vectors:

LP(c|G) = vLP(c|T*)" . vec(Adj(G))

" LP(c1|G)T TR i, ve) o LE(wg) o Ll (U Wed) | [ g
LP(CQ‘G) LPCQ(Ul,UQ) LPCQ(UZ',’U]') LPCQ(UTL7UTL—1)
LP(

cs3|G) EP. v, 8) w LB 0s0) & LUt 1)

| LP(cn|G). L s8] w EF 000 o LPe(UniU i)l |Wepmi
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So, what is compressive sensing?
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E——
Classical data acquisition :

 Shannon-Nyquist sampling theorem (Fundamental Theorem
of DSP):

--- “if you sample at twice the bandwidth, you can
perfectly reconstruct the data”

Al AT
NP

time
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E—————
The Sensing Problem :

* Consider sensing mechanisms in which information about a
signal f(t) is obtained by linear functionals recording the
values (e.g. MRI) :

yk:<f790k:>7 kzl)"'am'

* Inunder-sampled situations where the number
m of available measurementsis much smaller than the dimension n of
the signal f:
* Isit possible to design m <« n sensing waveformsto capture
almost all the information about f ?
* Isit possible to reconstruct nearly all the information of f from
sampled data ?
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E—————
Two principles :

e Sparsity : Compressive Sensing exploits the fact that many
natural signals are sparse or compressible in the sense that
they have concise representations when expressed in the
proper basis V.

* Incoherence: Suppose we are given a pair (®, V) of
orthobases of R™, The first basis ® is used for sensing the
object f and the second is used to represent f. A good result
often requires a low coherence between ® and .
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E——
Incoherent sampling :

* Incoherence: Suppose we are given a pair (P, V) of
orthobases of R™, The first basis @ is used for sensing the
object f and the second is used to represent f. A good result
often requires a low coherence between ® and V.

O V) = /1 - -
(@, ) n 1£3§n|<¢k7¢3>‘

u(®, ) € [1,/n]
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E——
Sparse Signal Recovery :

mingern ||Z||e, subject to yr = (p, Vx), Vke M

When f is sufficiently sparse, the recovery via L1-minimization s
provably exact.

Theorem 1 ( [E. Candes, 2007]): Fix f € R™ and suppose that the coefficient
sequence x of f in the basis W is § — sparse. Select m measurementsin the
® domain uniformly at random. Then if

m>C - p*(®%¥) - S - logn
for some positive constant C, the solution to the above queation is exact with
overwhelming probability2.
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E——
Sparse Signal Recovery :

1. The role of the coherence is completely transparent; the
smaller the coherence, the fewer samples are needed;

2. One suffers no information loss by measuring just about any
set of m coefficients which may be far less than the signal
size apparently demands.

3. Thesignal f can be exactly recovered from our condensed
dataset by minimizing a convex functional
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E——
Sparse Signal Recovery :

e Definition4.1 Restricted Isometry Property (RIP): For each
integers = 1,2,..., definethe isometry constant 8 of a
matrix A as the smallest number such that :

(1= &s)ll=llz, < [[Az[lz, < (1 +8s)ll2[,

holds for all s-sparse vectors x.

* If the RIP holds, then the reconstruction obtained by solving the
linear program is accurate.

mingegrn ||Z|e, subject to Az =y (= Ax)
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E——
Robust signal recovery from noisy data:

 We are given noisy data (e.g. Y = Ax + z) and use L1 minimization with
relaxed constraints for reconstruction:

min||¥|l;; subjectto min||AX — y||,, < ¢

where € bounds the amount of noise in the data.

e Theorem 2 ([E. Candes, 2006]): Assume that §,; < V2 — 1.Then
the solution x* obeys

|z* —zlle, < Co- |l& —zslle,/VS +Cr -

for some constants Cy and C; .
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