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» Introduction \/

purpose: for predicting tweet popularity

i.e. to predict how many reshares a given post will ultimately
receive.

conceptual model: information cascade

it simplifies users' resharing behavior & helps explain aggregating
etfects of individuals

statistical model: self-exciting point process
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>»what's information cascade? \J

An information cascade occurs when a person observes the actions
of others and then —despite possible contradictions in his/her own
private information signals—engages in the same acts.

condition:

1, decision 2, limited action space 3, sequentially 4, private 5, infer

example: spring outing
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»what's about self-exciting point process? \J

a point process is a type of random process for which any one
realisation consists of a set of isolated points either in time or
geographical space, or in even more general spaces.

example: the arrival of customers in a queue

self-excting: all the previous instances(i.e. reshares) influence the
future evolution of the process.
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intuitily, it
seems that if
the prediction
is precise, the
trends in the
two pictures
should matain
the same.
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Prediction by SEISMIC
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»related work \—

the two classifications of recent models for predicting size of
information cascades : feature based and point process based
methods.

point process: directly models the formation of an information
cascade in a network. a major distinction between SEISMIC and
Hawkes processes based method is that the process intensity A ,in
the former depends on another stocastic process p,
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feature based methods:

features - content features, original poster features, network
structural features and temporal features.

learning methods - probabilistic collaborative filtering, regression
trees, content-based models, and passive-aggressive algorithms.

laborious feature engineering and extensive training are crutial
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The SEISMIC model @ i

> Human reaction time

In order to predict the cascade size, we need to know how long it
takes for a person to reshare a post.

probability density ) , is also called a memory kernel because it
measures a physical/social system's memory of stimuli.

the distribution of human response time:

heavy-tailed in social networks,

usually the tail follows a power-law with exponent€([1,2]
or a log-normal distribution

O(s) only needs to be estimated once per network
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»Post infectiousness \&/

We assume each post yis associated with a time dependent,
intrinsic infectiousness parameter p,(w)

most existing methods studying self-exciting point processes
assume p, to be fixed over time.

a phase transition phenomenon at certain critical threshold.

in reality, Ris always bounded due to the finite size of the
network.
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this is an extension to the standard self-exciting point process(also
called the Hawkes process)

The definition of the intensity 4, of R, which simply measures the
rate of obtaining an additional reshare at time t.

ﬂ, — llm P(Rt+A _Rt :1)

¢ A—>0 A

A, =D, Z n®(t—1,)

t;<t,i>0
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» Predicting information cascades \&/

sample-function density is defined as the joint probability of the
number of reshares in the time interval [%,?) and the density of
their occurrence times.

R, .
P(R=r,t,,..t,) =] {4, .exp{—L’ Ads))
i1 i-1

R, t
=[] 4 -expi- j A.ds).
-1 o
by taking derivative of the In:

dInP(R=r,t,,...,t1.) _ il_r Zn.d)(s—t.)ds ~0
dp i Pt tiSS,iZOl l

A Rt
— P =%

an.f DO(s—¢,)ds
i—0 i
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the denominator, denoted as Nf hereafter, can be interpreted as
the accumulative "effective” number of exposed users to the post.

take ¢ —>00, J‘;(I)(S —t.)ds —> 1

: R. 1 1

P =R 7T BT 4L
Z n; —Z n; *
i=0 Roo i=0

Thus, the assumption that P:to be a constant over time is
unreasonable because most posts will have the same
infectiousness in the end. What's more, cannot explain the bursty
and volatile dynamics information cascades.
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weighting kernel g (s)

K,(s)=max{0,l —%}, s > 0.

then,

R,
[ K(e-s)dR, 2 K.(t-1)
p, = L _ i=1

Y R y
LO K (=s)dN; S, j K, (t—s)D(s—t,)ds
i=0 i

1, it quickly discards the unstable and potentially explosive
period at the beginning.

2, it takes into account posts in a larger window size as time t
increases

3, it up-weights the most recent posts and gradually down-
weights older posts.
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assume the (out-)degrees in the network are i.i.d with expectation #.
and the infectiousness parameter is a constant for §>¢

/ . €
Rt‘l'p(in_ ;Vt)a if p < ni’
IE[ROO| }_t] et ﬁ Py 1*
00, if p > —.
3 T+
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given 7, the sequence of random variables Z defines a

Galton-Watson tree with offspring expectation y/=n,p
Vk > 1,E [Zk+1 |Zk] L Z g . R,

NP v /@

E|) Z|z
e ] e n*p)
QOOQOQQQOOOOOOQQOOOG.)OO Z';,‘
3 .| E[Zi]
ERw|F:] =R+ K ;Zk =R + A-mp)
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Algorithm 1 SEismicC: Predict final cascade size

Purpose: For a given post at time ¢, predict its final reshare count
Input: Post resharing information: ¢; and n; forz =0, ..., R:.
Algorithm:
N: =0, N s =0
for : = ., R: do

Nt +“' T4

N{ +=n; ftt, o(s —ti)ds (Sec. 3.1)
end for
Roo (1) =ARt + atpe(Ne — Ni) /(1 — yepena) (Alg. 2)
Deliver: R (1)




» Details of Algorithm
f K,(t—s)D(s—t)ds
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c if 0 < s < s,
c(s/s0)" M0 if s> s,

o) =

1, 0 <t - L S S I\"t(s):ma.x{l—Q—S,O}, s > 0.
. t
2 S, <t—1t, < wn
3, Win<t—t, Swin+s, Win _L
4, win +s, <t —1, 2
Ltth(t—S)CD(s—ti)dS
=c(t,—t-t,/win +1/win -t,"/12)—c(t, —t-t,/ win +1/ win -t,>/2) - ceeeeeeee (1)

or

c-solw-(tz—ti)_g'(tl./win -0+@-1)-t/win —0/win -t,+1)/(6 -1)-0)—
cosg ety =)t/ win — 0+ (0 =1)-t/win — 0/ win -t, +1) /(6 =1)-0)---(2)
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casel: linear(ti, t) 1,0 <3600—¢, <300
case2: linear(ti, ti+s0) + power(ti+s0, t) 2.300 < 3600 —¢. <1800
case3d: linear(t-win, ti+s0) + power(ti+s0, t) 31800 < 3600 —ltl. <2100
case4: power(t-win, t) 4.2100 < 3600—1
given an example: l

£=3600,win=1800,{(0,33),(800,46828),(1600,208),(3000,37),(3500,1
37))

~

R, =0,R += K, (3600)+K,(2800) + K, (2000) + K, (600) + K, (100)
N =0, N, =33+46828+208+37 +137 = 47243

N; +=33- power(1800,3600) + D = Iit/ Z\NCQ,ROO =R + p,(N,-N®)/(1- p,n.)
46828 - power(1800,3600) +

208 -[linear(1800,1900) + power(1900,3600)] +

37 -[linear(3000,3300) + power(3300,3600)] +

137 - linear(3500,3600)
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the overall computational cost of SEIMIC is linear in the
observed number of reshares R of a given post by time t.

Algorithm 2 Compute real-time infectiousness p(t)

Purpose: For a given post w, calculate infectiousness p, with
information about w prior to time ¢
Input: Post resharing information: ¢; and n; forz =0, ..., R;.
Algorithm:
R,=0,Ng=0
fors —=—20,.... 5H:do
R, += K (t — t;)
end for
forz: =0,...,R:; do
N +=n; [ Ki(t — s)p(s — ti)ds (Sec. 4.1)
end for
pe = R /Ny
Deliver: p;
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EXPERIMENTS @ I

»Data description

complete set of over 3.2 billion tweets and retweets on Twitter
from 2011.10.7 to 2011.11.7.

tweet id | posting time | retweet time | number of followers
choose a subset of tweets with at least 50 retweets.
166,076 tweets satisfies.

training set: tweets of the first 7days

testing set: tweets of the next 8 days
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Evolution of the Number of Retweets

200-
o -=-Mean
5 -+~ Median
-
e | 50— 3
8 = .““...m“O““OOOQ
Py L A
@ ...0.”“..
- .....0”
.%, .‘.,.oog
_______ .‘ R oy e il (AT LR LA S oA T e P S (i S et B S L P S s A ST D e ST s Brestid
@®© 100- «*°
o o®
0 .‘ ALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
.?. o AAAAAAAAAAA‘AAAAAAAAAAA
E > W
3 50 ‘A“‘A
= Y
ey
pe |
o -
0- A
1 . I |
0 S y :

TimeLSince Original Post t (hour)

Figure 3: Convergence of the mean and media cumulative
retweet count F; as a function of time.The horizontal lines cor-
respond to mean and median final retweet count 14 gays- On
average, a tweet receives 75 % of its retweets in the first 6 hours.
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15 tweets in the training set are choosen to use the distribution of
all their retweet times as memory kernel. All the original posters
have an overwhelming number of followers.

Memory Kernel &(s)
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Figure 4: Reaction time distribution and the estimated memory
kernel ¢(s). The reaction time is plotted on logarithmic axes,
hence the linear trend suggests a power law decay.
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c if 0 < s < s,
c(s/s0)" 19 if s > sp.

d(s) =

0 =0.2314843,s, = 300,c = 0.0006265725

y.n, =20

time (minute) 5 10 15 20 30
« 0.389 0.803 0.772 0.709 0.680

time (minute) 60 120 180 240 360
o 0.562 0454 0.378 0.352 0.326

Table 2: Values a; used in Algorithm 1.



» Baseline for comparision
-Linear regression(LR)
log Row = ay + log Ry + €,
‘Linear regression with degree(LR-D)
log Roc = at + B¢ log Ry + Pa.clog Ny + B logno + ¢
‘Dynamic Poisson Model(DPM)

— g4
)‘t - )\tpeak (t B tpcak) tpcak — arg maXg.¢ )\s.

-‘Reinforced Poisson Model(RPM)

Ae =cfy(t)ra(R:)  fi(t) o< t77(y > 0)

)
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» Evaluation metrics
-Absolute Percentage Error(APE)

|Roc (w, t) - R ('w)|
R (w) '

APE(w,t) =

-Kendall-tau Rank Correlation
2P AP

7-:%n(n—l)_l:n(n—l)_1

‘Breakout Tweet Coverage

)
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»example of Kendall-tau Rank Correlation

12345678

34125786

P=5+4+5+4+3+1+0+0=22
88 44

56 28
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Figure 5: Predicted final retweet counts nicely follow the
ground-truth retweet counts, which suggests SEISMIC provides
an unbiased estimate of the final retweet count. The dashed red
curve is obtained by binning the tweets according to the pre-
diction and then computing the average number of retweets in
each bin.
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Distribution of APE for SEISMIC
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Figure 6: Absolute Percentage Error (APE) of SEisMIC on the
test set. We plot the median and the middle S0th, 80th, 90th
percentiles of the distribution of APE across the tweets.
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»identifving outbreaks
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Figure 7: Median Absolute Percentage Error (APE) and
Kendall’s Rank Correlation of SEisMiIC and the baselines as a
function of time. SEISMIC consistently gives best performance.
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Figure 8: Zoom-in of Figure 7: Median APE and Rank Corre-
lation for the first 60 minutes after the tweet was posted. SEIS-
MIC performs especially well compared to the baselines early in
the tweet’s lifetime.
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Figure 9: Coverage of top 100 most retweeted tweets. Each row
represents a tweet. White blocks indicate that a given tweet
was not covered by SEISMIC’s predicted list of top-500 tweets
at time £, and blue indicates successful coverage.
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Comparison of the Coverage of Top 500 Tweets
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Figure 10: Coverage of top 500 tweets (LZ50) by various meth-
ods. SEIsMIC exhibits clear improvement over all methods after
about 10% of retweets are observed. All methods except DPM
achieve perfect coverage after 65 % of retweets are observed.
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*if network structure is available, newly exposed followers
replace n,

» Future work:

*if features is available, we can develop a feature-based
prior of p,

*if user timezone is available, they can help modity the p,
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Ruiqt Yang




