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Introduction

purpose: for predicting tweet popularity
i.e. to predict how many reshares a given post will ultimately 
receive.
conceptual model: information cascade
it simplifies users' resharing behavior & helps explain aggregating 
effects of individuals
statistical model: self-exciting point process
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what's information cascade?
An information cascade occurs when a person observes the actions 
of others and then—despite possible contradictions in his/her own 
private information signals—engages in the same acts.
condition:
1, decision 2, limited action space 3, sequentially 4, private 5, infer

example: spring outing
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what's about self-exciting point process?
a point process is a type of random process for which any one 
realisation consists of a set of isolated points either in time or 
geographical space, or in even more general spaces.

example: the arrival of customers in a queue

self-excting: all the previous instances(i.e. reshares) influence the 
future evolution of the process.
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i n t u i t i l y,  i t 
seems that if 
the prediction 
is precise, the 
trends in the 
two pictures 
should matain 
the same.
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related work
the two classifications of recent models for predicting size of 
information cascades : feature based and point process based 
methods.

point process: directly models the formation of an information 
cascade in a network. a major distinction between SEISMIC and 
Hawkes processes based method is that the process intensity     in 
the former depends on another stocastic process 
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feature based methods:
features - content features, original poster features, network 
structural features and temporal features.

learning methods - probabilistic collaborative filtering, regression 
trees, content-based models, and passive-aggressive algorithms.

laborious feature engineering and extensive training are crutial
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Human reaction time

The SEISMIC model

In order to predict the cascade size, we need to know how long it 
takes for a person to reshare a post.

probability density          , is also called a memory kernel because it 
measures a physical/social system's memory of stimuli.

the distribution of human response time:
heavy-tailed in social networks,
usually the tail follows a power-law with exponent 
or a log-normal distribution

         only needs to be estimated once per network
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Post infectiousness
We assume each post      is associated with a time dependent, 
intrinsic infectiousness parameter 

most existing methods studying self-exciting point processes 
assume      to be fixed over time.

a phase transition phenomenon at certain critical threshold.
 
in reality,      is always bounded due to the finite size of the 
network. 

w
)(wpt

tp

tR



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室

this is an extension to the standard self-exciting point process(also 
called the Hawkes process)

The definition of the intensity       of     , which simply measures the 
rate of obtaining an additional reshare at time t.
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Predicting information cascades
sample-function density is defined as the joint probability of the 
number of reshares in the time interval            and the density of 
their occurrence times.

by taking derivative of the ln:
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the denominator, denoted as        hereafter, can be interpreted as 
the accumulative "effective" number of exposed users to the post.

take             , 

Thus,  the assumption that      to be a constant over time is 
unreasonable because most posts will have the same 
infectiousness in the end. What's more, cannot explain the bursty 
and volatile dynamics information cascades.
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weighting kernel 

then,

1, it quickly discards the unstable and potentially explosive 
period at the beginning.
2,  it takes into account posts in a larger window size as time t 
increases
3, it up-weights the most recent posts and gradually down-
weights older posts.
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assume the (out-)degrees in the network are i.i.d with expectation
and the infectiousness parameter is a constant for  
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given      , the sequence of random variables      defines a 
Galton-Watson tree with offspring expectation

1Z kZ
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Details of Algorithm
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case1: linear(ti, t)
case2: linear(ti, ti+s0) + power(ti+s0, t)
case3: linear(t-win, ti+s0) + power(ti+s0, t)
case4: power(t-win, t)
given an example：
t=3600,win=1800,{(0,33),(800,46828),(1600,208),(3000,37),(3500,1
37)}
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computational complexity of SEISMIC
the overall computational cost of SEIMIC is linear in the 
observed number of reshares       of a given post by time t. 

tR



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室

Data description

EXPERIMENTS

complete set of over 3.2 billion tweets and retweets on Twitter 
from 2011.10.7 to 2011.11.7.
tweet id|posting time|retweet time|number of followers
choose a subset of tweets with at least 50 retweets.
166,076 tweets satisfies.
training set:  tweets of the first 7days
testing set: tweets of the next 8 days 
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15 tweets in the training set are choosen to use the distribution of 
all their retweet times as memory kernel. All the original posters 
have an overwhelming number of followers. 
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Baseline for comparision
·Linear regression(LR)

·Linear regression with degree(LR-D)

·Dynamic Poisson Model(DPM)

·Reinforced Poisson Model(RPM)
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Evaluation metrics
·Absolute Percentage Error(APE)

·Kendall-tau Rank Correlation

·Breakout Tweet Coverage
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example of Kendall-tau Rank Correlation
1 2 3 4 5 6 7 8
3 4 1 2 5 7 8 6
P = 5 + 4 + 5 + 4 + 3 + 1 + 0 + 0 = 22



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室

identifying outbreaks
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Future work:
*if network structure is available, newly exposed followers 
replace 
*if features is available, we can develop a feature-based 
prior of 
*if user timezone is available, they can help modify the

in
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