

Probabilistic Graphical Models-chapter1&2

Xinwu Chen

Data Mining Lab, Big Data Research Center, UESTC Email: junmshao@uestc.edu.cn http://staff.uestc.edu.cn/shaojunming

The stories, formulas definitions in my speech you may have heard thousand of times

The 1st and 2nd chapter is just an preface of probabilistic graphical model

Contents

≻1 Introduction

- 1.1 Motivation
- 1.2 Structured Probabilistic Models
- 1.3 Overview and Roadmap(Ø)
- 1.4 Historical Notes(Ø)

>2 Foundations

- 2.1 Probability Theory
- 2.2 Graphs

1.1 Motivation

数据挖掘实验室 Data Mining Lab

> The true state of world is fundamental uncertainty

> We can't figure out what makes the stock market fall

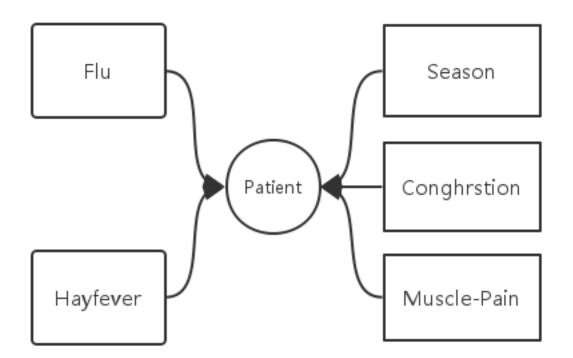
To obtain meaningful conclusions, we need to reason not just about what is possible, but also about what is probable

≻We want

- Take the available information and reach conclusions
- Develop a general suite of algorithms that apply any model within a broad class
- Solve the problem of the noisy etc
- Good for your study

1.2 Structured Probabilistic Models

≻Example



数据挖掘实验室

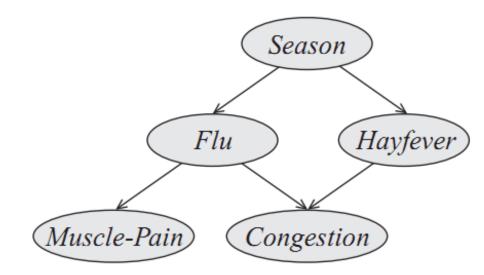
Data Mining Lab

LESS IS MORE

2*2*2*2*4=64

1.2 Structured Probabilistic Models

≻Example



Independencies

$$\begin{array}{c} (F\perp H\mid S)\\ (C\perp S\mid F,H)\\ (M\perp H,C\mid F)\\ (M\perp C\mid F) \end{array}$$

Factorization

$$\begin{split} P(S,F,H,C,M) &= P(S)P(F \mid S) \\ P(H \mid S)P(C \mid F,H)P(M \mid F) \end{split}$$

≻Example

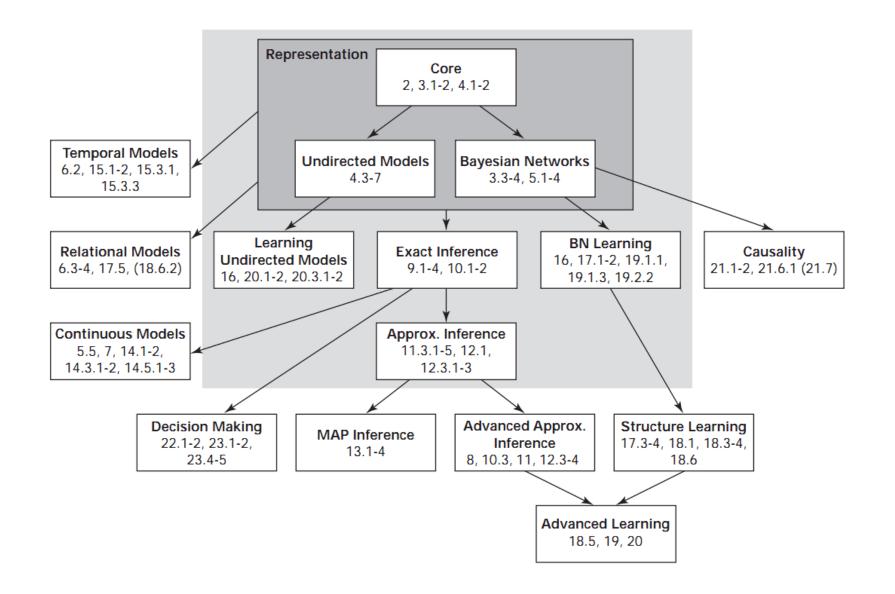
"spring, no flu, hayfever, inus congestion, muscle pain"

- P(Season = spring)*
- P(Flu = false | Season = spring)*
- P(Hayfever = true | Season = spring)*
- P(Congestion = true | Hayfever = true; Flu = false)*
- P(Muscle Pain = true | Flu = false)

\checkmark 3+4+4+4+2 = 17

- > The property that variables tend to interact directly only with very few others
 - 1.It often allows the distribution to be written down tractably
 - 2. The same structure often also allows the distribution to be used effectively for inference — answering queries using the distribution as our model of the world
 - 3. This framework facilitates the effective construction of these models

1.2 Structured Probabilistic Models

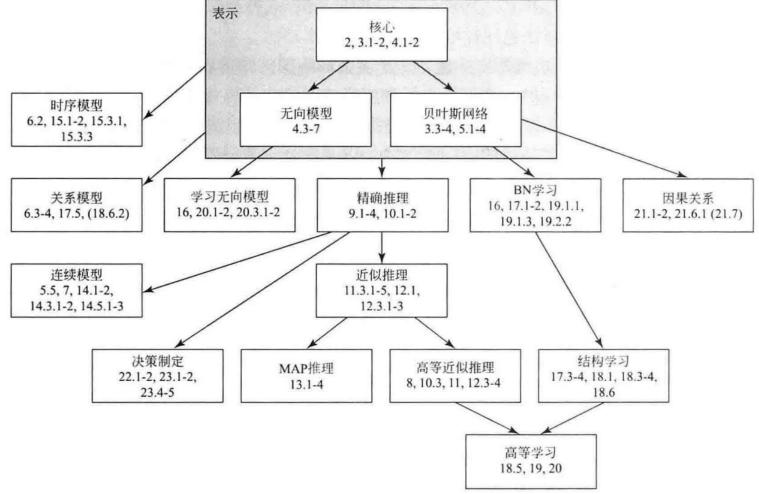


数据挖掘实验室

Data Mining Lab

LESS IS MO

1.2 Structured Probabilistic Models



数据挖掘实验室

Data Mining Lab

LESS IS MORI

where it is the spectrum where the second state where the second view

2.1 Probability Theory

> Probability Distribution

• **Event Spaces** Ω $\Omega = \{1, 2, 3, 4, 5, 6\}$

 $S = \{\phi, \{1,3,5\}, \{2,4,6\}, \Omega\}$

- Measurable events *S*
- $\phi \in S, \Omega \in S$
- $\forall \alpha, \beta \in S, \alpha \cup \beta \in S$
- $\alpha \in S, \Omega \alpha \in S$ $S = \{\phi, \Omega\}$
- **Probability distribution** $(\Omega, S) \ S \to R$
- $\forall \alpha \in S, P(\alpha) \ge 0$
- $P(\Omega) = 1$
- $\forall \alpha, \beta \in S, \alpha \cap \beta = \phi \Longrightarrow P(\alpha \cup \beta) = P(\alpha) + P(\beta)$

2.1 Probability Theory

- •Conditional Probability $P(\alpha \mid \beta) = \frac{P(\alpha \cap \beta)}{P(\beta)}$
 - α : students with good grades
 - β : students with high IQ
- Chain rule

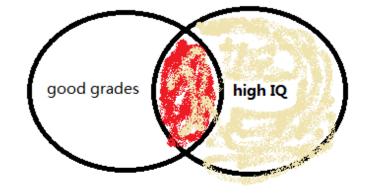
 $P(\alpha_1 \cap ... \cap \alpha_k) = P(\alpha_1)P(\alpha_2 \mid \alpha_1)...P(\alpha_k \mid \alpha_1 \cap ... \alpha_{k-1})$

• Random Variable $\Omega \rightarrow$ value

A = GradeA, B = high

- Joint Distribution $\chi = \{X_1, \dots, X_k\} \rightarrow P(\chi)$
- Marginal Distribution $P(X) = \sum_{y} P(X, y)$
- Bayes' rule

$$P(\alpha \mid \beta) = \frac{P(\beta \mid \alpha)P(\alpha)}{P(\beta)}.$$



		Intelligence		
		low	high	
	A	0.07	0.18	0.25
Grade	В	0.28	0.09	0.37
	С	0.35	0.03	0.38
		0.7	0.3	1

Independence and Conditional Independence

Independence

 $P(\alpha \cap \beta) = P(\alpha)P(\beta), P(\alpha \mid \beta) = \frac{P(\alpha \cap \beta)}{P(\beta)} = P(\alpha)$ $P(\alpha \mid \beta) \neq P(\alpha)$ $P(\alpha \mid \beta) = P(\alpha) \parallel P(\beta) = 0, P \models (\alpha \perp \beta)$ $(\alpha \perp \beta) \Leftrightarrow (\beta \perp \alpha)$

- **Conditional Independence**
- P(MIT|Stanford,GradeA) = P(MIT|GradeA)

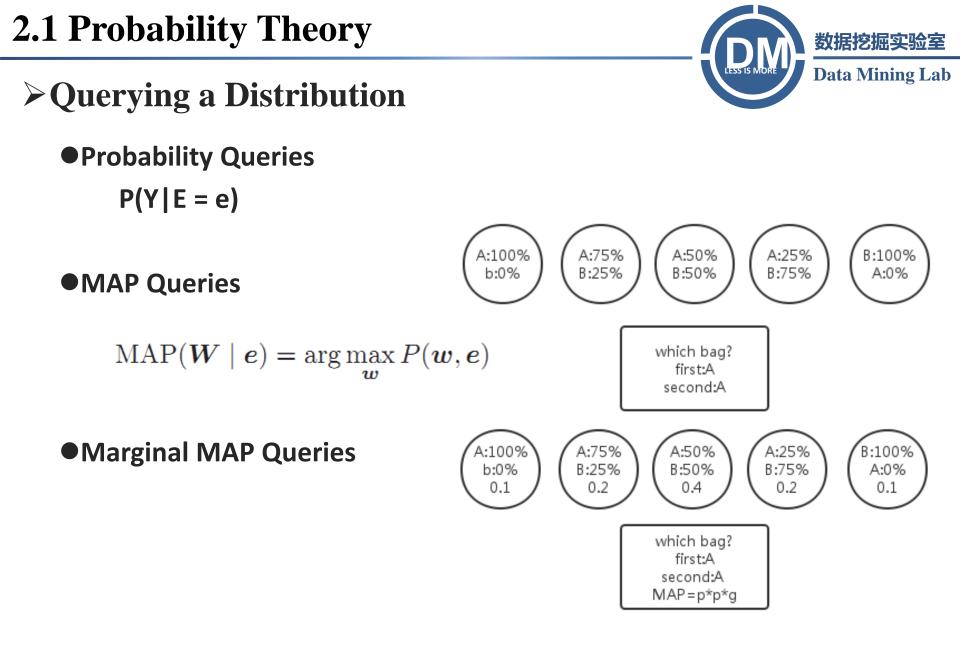
 $(\alpha \perp \beta \mid \gamma) \Leftrightarrow P(\alpha \cap \beta \mid \gamma) = P(\alpha \mid \gamma)P(\beta \mid \gamma)$

>Independence properties

- •Symmetry $(X \perp Y \mid Z) \Leftrightarrow (Y \perp X \mid Z)$
- •**Decomposition** $(X \perp Y, W \mid Z) \Rightarrow (X \perp Y \mid Z)$
- Weak union $(X \perp Y, W \mid Z) \Rightarrow (X \perp Y \mid W, Z)$
- •**Contraction** $(X \perp W \mid Z, Y) \& (X \perp Y \mid Z) \Rightarrow (X \perp Y, W \mid Z)$
- •Intersection $(X \perp Y \mid Z, W) \& (X \perp W \mid Z, Y) \Rightarrow (X \perp Y, W \mid Z)$

数据挖掘实验室

Data Mining Lab



> probability density function(PDF)

$$P(a \le X \le b) = \int_{a}^{b} p(x) dx.$$

> Joint Density Functions

$$P(a_1 \le X_1 \le b_1, \dots, a_n \le X_n \le b_n) = \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} p(x_1, \dots, x_n) dx_1 \dots dx_n.$$

Conditional Density Functions

$$P(Y \mid x) = \lim_{\epsilon \to 0} P(Y \mid x - \epsilon \le X \le x + \epsilon).$$

Expectation

Variance

$$\mathbb{E}_P[X] = \sum_x x \cdot P(x). \qquad \qquad \mathbb{V}ar_P[X] = \mathbb{E}_P\left[(X - \mathbb{E}_P[X])^2 \right].$$

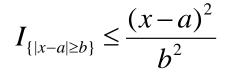
2.1 Probability Theory

>Chebyshev inequality

$$P(|X - E[X]| \ge \varepsilon) \le \frac{D[X]}{\varepsilon^2}$$
$$\varepsilon = k\sigma, P(|X - E[X]| \ge k\sigma) \le \frac{1}{k^2}$$

Indicator function $I_{\{A\}} = 1, A = true$

 $E[I_{\{A\}}] = P(A)$



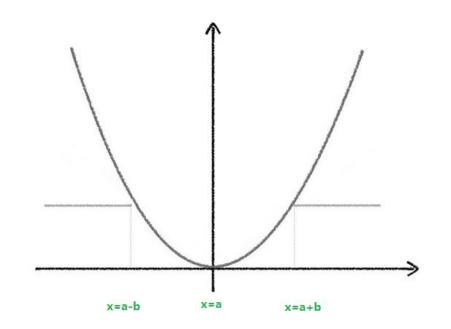


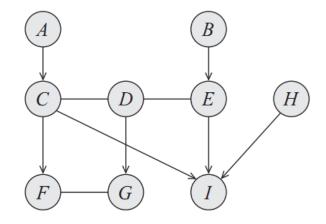
Image courtesy of Jim Pitman, Omid Solari and Xin Wang.

A graph is a data structure K consisting of a set of nodes and a set of edges

- ➢ Node: X = {X1; ...;Xn}
- Edge:
- undirected edge Xi—Xj
 Xi is a neighbor of Xj
- directed edge Xi -> Xj

Xj is the child of Xi Xi is the parent of Xj

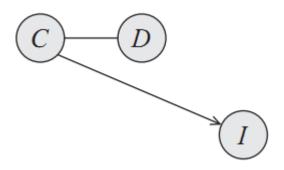
Given a graph $\mathcal{K} = (\mathcal{X}, \mathcal{E})$, its undirected version is a graph $\mathcal{H} = (\mathcal{X}, \mathcal{E}')$ where $\mathcal{E}' = \{X - Y : X \rightleftharpoons Y \in \mathcal{E}\}$.



数据挖掘实验室

Data Mining Lab

≻2.2.2 Subgraphs



Let $\mathcal{K} = (\mathcal{X}, \mathcal{E})$, and let $\mathbf{X} \subset \mathcal{X}$. We define the induced subgraph $\mathcal{K}[\mathbf{X}]$ to be the graph $(\mathbf{X}, \mathcal{E}')$ where \mathcal{E}' are all the edges $X \rightleftharpoons Y \in \mathcal{E}$ such that $X, Y \in \mathbf{X}$.

A subgraph over X is complete if every two nodes in X are connected by some edge. The set X is often called a clique; we say that a clique X is maximal if for any superset of nodes $Y \supset X$, Y is not a clique.

≻2.2.2 Subgraphs

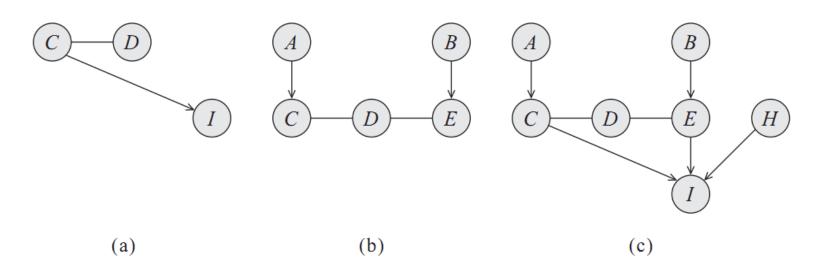
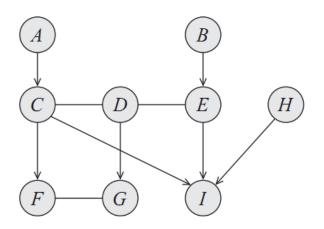
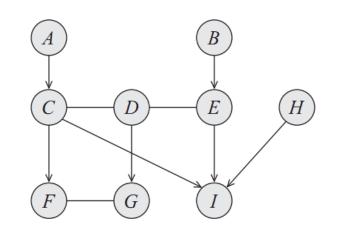


Figure 2.4 Induced graphs and their upward closure: (a) The induced subgraph $\mathcal{K}[C, D, I]$. (b) The upwardly closed subgraph $\mathcal{K}^+[C]$. (c) The upwardly closed subgraph $\mathcal{K}^+[C, D, I]$.



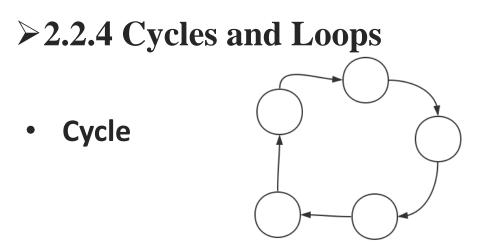
- >2.2.3 Paths and Trails
- Path
- Trail($X_i \rightleftharpoons X_{i+1}$)



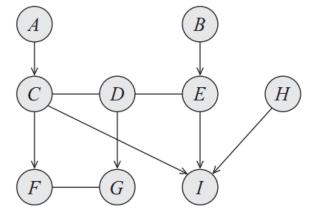
- A graph is connected if for every Xi, Xj there is a trail between Xi and Xj
- Ancestors X
- Topological ordering

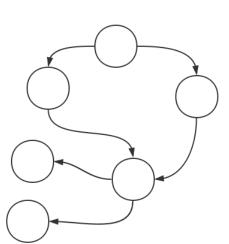
Let $\mathcal{G} = (\mathcal{X}, \mathcal{E})$ be a graph. An ordering of the nodes X_1, \ldots, X_n is a topological ordering relative to \mathcal{K} if, whenever we have $X_i \to X_j \in \mathcal{E}$, then i < j.

Data Mining Lab



- Directed acyclic graph (DAG)
- [Bayes]
- Partially directed acyclic graph (PDAG)
- (Chain graph)
- {A}, {B}, {C;D;E}, {F;G}, {H}, {I}



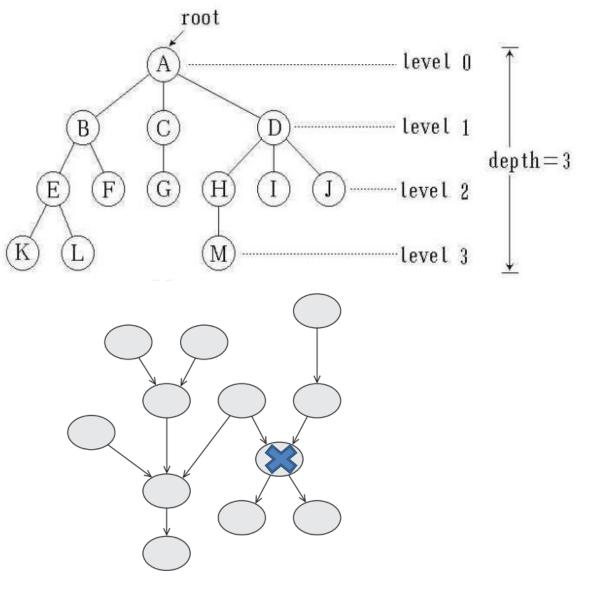


数据挖掘实验室 Data Mining Lab

LESS IS MO

► 2.2.4 Cycles and Loops

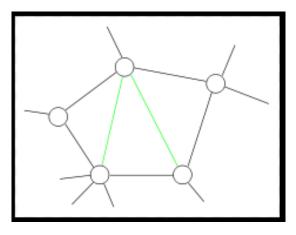
- Tree
- Forest



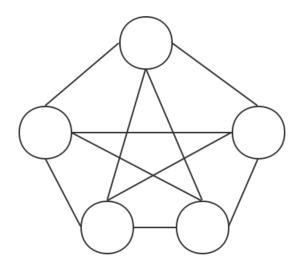
• polytree

Data Mining Lab

- >2.2.4 Cycles and Loops
- Chord ullet



- Triangulated ٠
- chordal graph •



Xinwu Chen

University of Electronic Science and Technology of China chen_xin_wu@qq.com