Ranking with Multiple Hyperplanes

Tao Qin et al.
Microsoft Research Asia SIGIR 2007

Problem Definition

- Set of objects
- Each object has a rank
- Order objects according to rank

Problem Definition

- Set of objects
- Each object has a rank
- Order objects according to rank
- Don't know ranks in advance

Sample Problem

- A: Rank 3
- B: Rank 2
- C : Rank 2
- D : Rank 1

Sample Problem

- A: Rank 3
- B : Rank 2
- C : Rank 2

D: Rank 1
Total Order

- (A, B, C, D)
- (A, C, B, D)

General Ranking SVM

Decompose into Pairwise Order

Decompose
Total Order into
Pairwise Order

- Training Instance
- A: Rank 3, B: Rank 2

C: Rank 2, D: Rank 1

Decompose into Pairwise Order

Decompose
Total Order into Pairwise Order

- Training Instance
- A: Rank 3, B: Rank 2

C: Rank 2, D: Rank 1

- Pairwise Order
- (A, B), (A, C), (A, D)
(B, D), (C, D)

General Ranking SVM

General Ranking SVM

Machine Learning Algorithm
Conflict Resolution Algorithm

General Ranking SVM

Pairwise Order Ranker

- Object X : feature vector x
- Object Y : feature vector y
- Ranker $\mathrm{f}(x, y)$
$\square X>Y \rightarrow f(x, y)>0$
$\square \mathrm{X}<\mathrm{Y} \rightarrow \mathrm{f}(\mathrm{x}, \mathrm{y})<0$

Train Pairwise
Order Ranker

SVM Ranker

$\mathrm{f}(x, y)=w^{\top}(x-y)$
SVM finds w for us

Train Pairwise Order Ranker

Problem with Ranking SVM

- Time Complexity O(nk
- Instances not separable by a single hyperplane

Train Pairwise Order Ranker

Solution: Multiple SVM Rankers

- One SVM classifier for each rank pair
- A : Rank 3, B: Rank 2

C: Rank 2, D: Rank 1

- SVM for Rank 3 and Rank 2
- (A, B), (A, C)

Train Pairwise Order Ranker

- SVM for Rank 3 and Rank 1
- (A, D)
- SVM for Rank 2 and Rank 1
- (B, D), (C, D)

Single VS. Multiple SVM

- Training Instances
- (A, B), (A, C), (A, D)
(B, D), (C, D)
- Single SVM Complexity
- 5^{k}

Train Pairwise
Order Ranker

- Multiple SVM Compexity
- $2^{k}+1^{k}+2^{k}$

Single VS. Multiple SVM

General Ranking SVM

General Ranking SVM

Aggregate Pairwise Order

- Prediction Input:
- E, F, G
- Prediction Output:
- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)
- Total Order????

Aggregate Pairwise Order into Total Order

Weighted Borda Count

- $\mathrm{s}(x)=\Sigma_{k=1 \text { to } / \alpha_{k}} \mathbf{s}_{k}(x)$
- What the???

Aggregate
Pairwise Order into Total Order

Weighted Borda Count

$\square \mathrm{s}(x)=\Sigma_{k=1 \text { to } / \alpha_{k} \mathrm{~S}_{k}(x)}$

- What the???
= Weighted Majority Vote

Aggregate
Pairwise Order into Total Order

Weighted Borda Count

- Prediction Output
- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)

Aggregate
Pairwise Order into Total Order

Weighted Borda Count

- Prediction Output
- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)
- E appears first 4 times

Aggregate Pairwise Order into Total Order

Weighted Borda Count

- Prediction Output
- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)
- E appears first 4 times
- F appears first 2 times

Weighted Borda Count

- Prediction Output
- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)
- E appears first 4 times
- F appears first 2 times
- G appears first 3 times

Weighted Borda Count

- Prediction Output
- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)
- E appears first 4 times
- F appears first 2 times
- G appears first 3 times

Total Order: (E, G, F)

Weighted Borda Count

- "Weighted" Borda Count
- Give a weight to reach SVM
- SVM 1's vote is twice as important as SVM 2's vote

Aggregate
Pairwise Order into Total Order

General Ranking SVM

Application to IR?

- Document \rightarrow Object
- Relevance \rightarrow Rank
- Highly Relevant : Rank 3
- Possibly Relevant: Rank 2
- Not Relevant : Rank 1

Corpus for Experiment

- OHSUMED
- 348,566 documents
- 106 queries
- 16,140 query-document pairs
- 3 relevance ranks

Features

$$
\begin{array}{ll|ll}
\hline 1 & \sum_{q_{i} \in q \cap d} \log \left(c\left(q_{i}, d\right)+1\right) & 2 & \sum_{q_{i} \in q \cap d} \log \left(\frac{|c|}{c\left(q q_{i}, c\right)}+1\right) \\
\hline 3 & \sum_{q_{i} \in q \cap d} \log \left(\frac{c\left(q_{i}, d\right)}{|l|} i d f\left(q_{i}\right)+1\right) & 4 & \sum_{q_{i} \in q \cap d} \log \left(\frac{c\left(q_{i}, d\right)}{d d \mid}+1\right) \\
\hline 5 & \sum_{q_{i} \in q \cap d} \log \left(\frac{c\left(q_{i, d}\right) \cdot .|c|}{|d|}+1\right) & 6 & \sum_{q_{i} \in q \cap d} \log \left(i d f\left(q_{i}\right)\right) \\
\hline 7 & \log (\text { BM 25 score }) & & \\
\hline
\end{array}
$$

Corpus for Experiment

- Definition Search
- 170 queries
- 2,000 documents per query
- 3 relevance ranks

1. <query> occurs at beginning of paragraph.
2. <query> begins with 'the', 'a', or 'an'.
3. All the words in <query> begin with uppercase letters.
4. Paragraph contains predefined negative words, e.g. 'he', 'said', 'she'
5. <query> contains pronouns.

OHSUMED Results

OHSUMED Results

Definition Search Results

Definition Search Results

OHSUMED Training Time

Minutes	MHR				RSVM
	$\omega_{1,2}$	$\omega_{1,3}$	$\omega_{2,3}$	Sum	
trial 1	17	90	175	282	823
trial 2	17	75	200	292	841
trial 3	16	78	154	248	663
trial 4	22	92	196	310	887

Definition Search Training Time

Seconds	MHR				RSVM
	$\omega_{1,2}$	$\omega_{1,3}$	$\omega_{2,3}$	Sum	
trial 1	0.07	0.06	1.17	1.30	1.90
trial 2	0.11	0.07	2.78	2.96	3.10
trial 3	0.13	0.07	1.41	1.61	2.83
trial 4	0.08	0.07	1.67	1.82	3.76

Contribution

- Multiple Hyperplanes are good because
- Less training time
- More accurate

General Ranking SVM

Machine Learning Algorithm
Conflict Resolution Algorithm

