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Sample Problem

 A : Rank 3
 B : Rank 2
 C : Rank 2
 D : Rank 1
 Total Order

 (A, B, C, D)
 (A, C, B, D)
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 Training Instance
 A : Rank 3, B : Rank 2

C : Rank 2, D : Rank 1
 Pairwise Order

 (A, B), (A, C), (A, D)
(B, D), (C, D)
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Pairwise Order Ranker

 Object X : feature vector x
 Object Y : feature vector y
 Ranker f(x, y)

 X > Y  f(x, y) > 0
 X < Y  f(x, y) < 0

Train Pairwise
Order Ranker



SVM Ranker

 f(x, y) = wT(x – y)
 SVM finds w for us

Train Pairwise
Order Ranker



Problem with Ranking SVM

Train Pairwise
Order Ranker

 Time Complexity O(nk)
 Instances not separable by a 

single hyperplane

Rank 1

Rank 2
Rank 3



Solution: Multiple SVM Rankers

 One SVM classifier for each rank 
pair

 A : Rank 3, B : Rank 2
C : Rank 2, D : Rank 1

 SVM for Rank 3 and Rank 2
 (A, B), (A, C)

 SVM for Rank 3 and Rank 1
 (A, D)

 SVM for Rank 2 and Rank 1
 (B, D), (C, D)

Train Pairwise
Order Ranker



Single VS. Multiple SVM

Train Pairwise
Order Ranker

 Training Instances
 (A, B), (A, C), (A, D)

(B, D), (C, D)
 Single SVM Complexity

 5k

 Multiple SVM Compexity
 2k + 1k

 + 2k



Single VS. Multiple SVM

Train Pairwise
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Rank 1

Rank 2
Rank 3

Rank 1

Rank 2
Rank 3

One SVM

Three SVM
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Aggregate Pairwise Order

 Prediction Input:
 E, F, G

 Prediction Output:
 SVM 1: (E, F), (E, G), (F, G)
 SVM 2: (E, F), (G, E), (F, G)
 SVM 3: (E, F), (G, E), (G, F)

 Total Order????
Aggregate

Pairwise Order
into Total Order
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 s(x) = k=1 to lksk(x)
 What the???
 = Weighted Majority Vote
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 Prediction Output
 SVM 1: (E, F), (E, G), (F, G)
 SVM 2: (E, F), (G, E), (F, G)
 SVM 3: (E, F), (G, E), (G, F)

 E appears first 4 times
 F appears first 2 times
 G appears first 3 times
 Total Order: (E, G, F)



Weighted Borda Count

Aggregate
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into Total Order

 “Weighted” Borda Count
 Give a weight to reach SVM
 SVM 1’s vote is twice as 

important as SVM 2’s vote
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Application to IR?

 Document  Object
 Relevance  Rank

 Highly Relevant : Rank 3
 Possibly Relevant : Rank 2
 Not Relevant : Rank 1



Corpus for Experiment

 OHSUMED
 348,566 documents
 106 queries
 16,140 query-document pairs
 3 relevance ranks



Corpus for Experiment

 Definition Search
 170 queries
 2,000 documents per query
 3 relevance ranks



OHSUMED Results
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Definition Search Results



OHSUMED Training Time



Definition Search Training Time



Contribution

 Multiple Hyperplanes are good because
 Less training time
 More accurate
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