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Pairwise Order Ranker

 Object X : feature vector x
 Object Y : feature vector y
 Ranker f(x, y)

 X > Y  f(x, y) > 0
 X < Y  f(x, y) < 0

Train Pairwise
Order Ranker



SVM Ranker

 f(x, y) = wT(x – y)
 SVM finds w for us

Train Pairwise
Order Ranker



Problem with Ranking SVM

Train Pairwise
Order Ranker

 Time Complexity O(nk)
 Instances not separable by a 

single hyperplane

Rank 1

Rank 2
Rank 3



Solution: Multiple SVM Rankers

 One SVM classifier for each rank 
pair

 A : Rank 3, B : Rank 2
C : Rank 2, D : Rank 1

 SVM for Rank 3 and Rank 2
 (A, B), (A, C)

 SVM for Rank 3 and Rank 1
 (A, D)

 SVM for Rank 2 and Rank 1
 (B, D), (C, D)

Train Pairwise
Order Ranker



Single VS. Multiple SVM

Train Pairwise
Order Ranker

 Training Instances
 (A, B), (A, C), (A, D)

(B, D), (C, D)
 Single SVM Complexity

 5k

 Multiple SVM Compexity
 2k + 1k

 + 2k



Single VS. Multiple SVM

Train Pairwise
Order Ranker

Rank 1

Rank 2
Rank 3

Rank 1

Rank 2
Rank 3

One SVM

Three SVM
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Aggregate Pairwise Order

 Prediction Input:
 E, F, G

 Prediction Output:
 SVM 1: (E, F), (E, G), (F, G)
 SVM 2: (E, F), (G, E), (F, G)
 SVM 3: (E, F), (G, E), (G, F)

 Total Order????
Aggregate

Pairwise Order
into Total Order
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 s(x) = k=1 to lksk(x)
 What the???
 = Weighted Majority Vote
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 Prediction Output
 SVM 1: (E, F), (E, G), (F, G)
 SVM 2: (E, F), (G, E), (F, G)
 SVM 3: (E, F), (G, E), (G, F)

 E appears first 4 times
 F appears first 2 times
 G appears first 3 times
 Total Order: (E, G, F)



Weighted Borda Count

Aggregate
Pairwise Order
into Total Order

 “Weighted” Borda Count
 Give a weight to reach SVM
 SVM 1’s vote is twice as 

important as SVM 2’s vote
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Application to IR?

 Document  Object
 Relevance  Rank

 Highly Relevant : Rank 3
 Possibly Relevant : Rank 2
 Not Relevant : Rank 1



Corpus for Experiment

 OHSUMED
 348,566 documents
 106 queries
 16,140 query-document pairs
 3 relevance ranks



Corpus for Experiment

 Definition Search
 170 queries
 2,000 documents per query
 3 relevance ranks
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OHSUMED Training Time



Definition Search Training Time



Contribution

 Multiple Hyperplanes are good because
 Less training time
 More accurate
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