Ranking with Multiple Hyperplanes

> Tao Qin et al. Microsoft Research Asia SIGIR 2007

Problem Definition

- Set of objects
- Each object has a rank
- Order objects according to rank

Problem Definition

- Set of objects
- Each object has a rank
- Order objects according to rank
- Don't know ranks in advance

Sample Problem

- A : Rank 3
- B : Rank 2
- C : Rank 2
- D : Rank 1

Sample Problem

- A : Rank 3
- B : Rank 2
- C : Rank 2
- D : Rank 1
- Total Order
 - □ (A, B, C, D)
 - □ (A, C, B, D)

Decompose into Pairwise Order

Decompose Total Order into Pairwise Order

Training Instance

□ A : Rank 3, B : Rank 2

C: Rank 2, D: Rank 1

Decompose into Pairwise Order

Decompose Total Order into Pairwise Order

Training Instance

- □ A : Rank 3, B : Rank 2
 - C: Rank 2, D: Rank 1
- Pairwise Order
 (A, B), (A, C), (A, D)
 (B, D), (C, D)

Machine Learning Algorithm

Conflict Resolution Algorithm

Pairwise Order Ranker

- Object X : feature vector x
- Object Y : feature vector y

Ranker f(x, y)

- $\Box X > Y \rightarrow f(x, y) > 0$
- $\Box X < Y \rightarrow f(x, y) < 0$

Train Pairwise Order Ranker

SVM Ranker

f(x, y) = w^T(x − y)
SVM finds w for us

Train Pairwise Order Ranker

Problem with Ranking SVM

Time Complexity O(n^k)
 Instances not separable by a single hyperplane

Solution: Multiple SVM Rankers

- One SVM classifier for each rank pair
- A : Rank 3, B : Rank 2
 - C: Rank 2, D: Rank 1
- SVM for Rank 3 and Rank 2
 (A, B), (A, C)
- SVM for Rank 3 and Rank 1
 (A, D)
- SVM for Rank 2 and Rank 1
 (B, D), (C, D)
- Train Pairwise Order Ranker

Single VS. Multiple SVM

 Training Instances
 (A, B), (A, C), (A, D) (B, D), (C, D)

Single SVM Complexity
 5^k

Train Pairwise Order Ranker Multiple SVM Compexity
 2^k + 1^k + 2^k

Aggregate Pairwise Order

- Prediction Input:
 - □ E, F, G
- Prediction Output:
 - SVM 1: (E, F), (E, G), (F, G)
 - SVM 2: (E, F), (G, E), (F, G)
 - SVM 3: (E, F), (G, E), (G, F)

Total Order????

•
$$s(x) = \sum_{k=1 \text{ to } I} \alpha_k s_k(x)$$

• What the???

•
$$s(x) = \sum_{k=1 \text{ to } I} \alpha_k s_k(x)$$

What the???

= Weighted Majority Vote

Prediction Output

- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
 SVM 3: (E, F), (G, E), (G, F)

Prediction Output

- SVM 1: (E, F), (E, G), (F, G)
- □ SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)

E appears first 4 times

Prediction Output

- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)
- E appears first 4 times
- F appears first 2 times

Prediction Output

- SVM 1: (E, F), (E, G), (F, G)
- □ SVM 2: (E, F), (G, E), (F, G)
- SVM 3: (E, F), (G, E), (G, F)
- E appears first 4 times
- F appears first 2 times
- G appears first 3 times

Prediction Output

- SVM 1: (E, F), (E, G), (F, G)
- SVM 2: (E, F), (G, E), (F, G)
 SVM 2: (E, F), (G, E), (G, E)
- SVM 3: (E, F), (G, E), (G, F)
- E appears first 4 times
- F appears first 2 times
- G appears first 3 times
- Total Order: (E, G, F)

- "Weighted" Borda Count
- Give a weight to reach SVM
- SVM 1's vote is twice as important as SVM 2's vote

Application to IR?

- Relevance → Rank
 - Highly Relevant : Rank 3
 - Possibly Relevant : Rank 2
 - Not Relevant : Rank 1

Corpus for Experiment

OHSUMED

- 348,566 documents
- 106 queries
- 16,140 query-document pairs
- 3 relevance ranks

	Features								
1	$\sum_{q_i \in q \cap d} \log(c(q_i, d) + 1)$	2	$\sum_{q_i \in q \cap d} \log \left(\frac{ C }{c(q_i, C)} + 1 \right)$						
3	$\sum_{q_i \in q \cap d} \log\left(\frac{c(q_i,d)}{ d } i df(q_i) + 1\right)$	4	$\sum_{q_i \in q \cap d} \log\left(\frac{c(q_i,d)}{ d } + 1\right)$						
5	$\sum_{q_i \in q \cap d} \log \left(\frac{c(q_i, d)}{ d } \cdot \frac{ C }{c(q_i, C)} + 1 \right)$	6	$\sum_{q_i \in q \cap d} \log(idf(q_i))$						
7	log(BM25 score)								

Corpus for Experiment

- Definition Search
 - 170 queries
 - 2,000 documents per query
 - 3 relevance ranks
- 1. <query> occurs at beginning of paragraph.
- 2. <query> begins with 'the', 'a', or 'an'.
- 3. All the words in <query> begin with uppercase letters.
- 4. Paragraph contains predefined negative words, e.g. 'he', 'said', 'she'
- 5. <query> contains pronouns.

OHSUMED Results

OHSUMED Results

Definition Search Results

Definition Search Results

OHSUMED Training Time

Minutos					
winnutes	$\omega_{1,2}$	$\omega_{I,3}$	$\omega_{2,3}$	Sum	RSVM
trial 1	17	90	175	282	823
trial 2	17	75	200	292	841
trial 3	16	78	154	248	663
trial 4	22	92	196	310	887

Definition Search Training Time

Seconds		RSVM			
Seconds	$\omega_{1,2}$	$\omega_{I,3}$	$\omega_{2,3}$	Sum	
trial 1	0.07	0.06	1.17	1.30	1.90
trial 2	0.11	0.07	2.78	2.96	3.10
trial 3	0.13	0.07	1.41	1.61	2.83
trial 4	0.08	0.07	1.67	1.82	3.76

Contribution

- Multiple Hyperplanes are good because
 - Less training time
 - More accurate

Machine Learning Algorithm

Conflict Resolution Algorithm