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01 Motivation
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\ Describe our world! f%\ SERETEE

e Representation, Learning , Inference

d’| d' i
Inference: response to queries (what 06
we want to
know)
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Figure 1: Student Bayesian network
Btudent With CPDs
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Data Mining Lab

From a high level, it appears that sampling methods are the
ultimate general-purpose inference algorithm. They are the
only method that can be applied to arbitrary probabilistic
models and that is guaranteed to achieve the correct results at
the large sample limit.

p(z) f(2)
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e How to sample?
In most case, we want to find E(f(z)) = f f(2)p(2)dz

* We draw samples {Z i} y fromf(z) iid.

I M I
L. 1 |
Andweset | E(f(2)) = ) f(29)]
| i=1 i
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e Why sampling work?

* Hoetfding bound:

Py (Pp(2) € [P(2) — & P(2) + €]) < 2e2Me* < §

$

Y In(2/6)

— 2&?
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e Common transformation:

Target: generate random numbers from simple nonuniform
distribution.

* Method(Transformation technique):

given z ~ Uniform(0, 1) using some function f (-) to transform
z so that y = f(2)

m) the distributionofyis: p(y) = p(z)lj—;l

z = h(y)=[2, p(@)dy

p(z) =1

m) ) =hl(2)=f(2)
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* One example:

draw samples from exponential distribution

p(y) = dexp(—Ady) 0=A <o

‘ Z2(>D> — 1 — exp(—ADD
‘ > T A Tincr — =

Thus, if we transform the uniformly distributed variable z
using y = —A7'In(1 — z) , then y will have an exponential

distribution.
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2 Some Basic Methods




Naive Sampling/Forward Sampling f. N\ [P

\ ’ Data Mining Lab

e In the BN:

 First, figuratively toss a coin to
draw the sample from D. Assume we

get d°.

o

ntelligence

» Similarly, toss a coin to draw the

sample from . Assume we get i°.

: 25 | 0.7 : ' o
4 0o |00 | 002 = ;8 | g * Then we sample for G given d
i'd' |05 |03 |02 i’ | 095 | 0.0s and i°.

i' |02 |08

> | * The process continues similarly
1lo1 |09
4 = for Sand L.
E :
2 | 099 [ 001
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Naive Sampling/Forward Sampling @ HEETEE

e The problems:

* Apply (at least in their simple form) only to Bayesian networks,
in undirected models, even generating a sample from the prior
distribution is a difficult task.

 For a model with hundreds or more variables, rare events will
be very hard to gain enough samples even after a long time for

sampling.
Burglary

Fik) EO BO AO MO JO

o

EO BO A0 MO JO
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E] P EO BO A0 MO Jo
H £0 | B0 | A0 | mo | w0 |P(JIBL)=P(J,B1)/P(B1)
: f::] EO BO A0 MO JO |can not defined
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EO BO A0 MO JO
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‘Rejection Sampling @ SRR

e Suppose we wish to sample from :
p(x) =p'(x)/x

* It's common that ™  is difficult to sample or even to compute,
But™™  iseasy toevaluate. ©  isoften called the target
distribution.

CxD

* Sample from a simple distribution - , known as the

proposal distribution.

» Introduce a constant k who guarantees that kq(z) = p(z) for
all values of z.

kq(zo0) kale)
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Rejection Sampling @ P
e Three steps for each sample: u

= First, generate a number zy from the distribution q(z).

* Next, generate a number 1, from the uniform distribution
over [0, kq(zq)]-

e Finally, if ug > p(zo) then the sample is rejected, otherwise
Zy 1s retained.
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‘Rejection Sampling @ SRR

* (Correctness:
o APLZ)/kqlz)]q(2)
Jlp'(2)/k q(2)]q(2)dx
_ (@)
J ' (z)dx

Pr(Cz)

— pC=D
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‘Rejection Sampling @ SRR

e Drawbacks:

* Inlow dimensions, the shape of = and “~  need to be
similar with each other, otherwise we will reject lots of samples.

* In high dimensions, even if the shapes of these two distributions
are similar, the rejection rate is really high.(leave out the proof)
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Unnormalized Importance Sampling @ P

e Suppose sampling from P(x) is hard, but we can
sample from a simpler proposal distribution Q(x).

e If Q dominates P (i.e., Q(x) = O whenever P(x) = 0),
the procedure to compute E (f (x)) is:

¢ Sample "7 form=1,23,... M

P(x™)
Q(x™)

M
~ 1
 Compute f = % Z f(x™)
m=1

P(x™) . : :
20 1S known as importance weight.
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e Claim: f is an unbiased estimator of “ <<

= Eznglf(2) 58

- [ 1055 e@

. / f(2)P(z) da

] as """ are i.i.d drawn from Q@
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Normalized Importance Sampling @) e

e Suppose we can only evaluate ~ <> ==~ for some
unknown scaling factor a > 0.(e.g. for an MRF)

e We can eliminate the nasty normalization constant «

as follows:
C Let r(r) =&
Q(x)
()] — P'ta) _ £ i) o
=) Eqlria)] = Eolgg) = [ G @@
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e The procedure to compute E(f(x)) is:

* Sample ~" 7 form=123, ... M

M
1
« Compute scaling factor estimator & = W Z r(x™)

m=1

* Compute

RIS PPN i WD 0¥ (Ui i

M ~ Q™) M p(gm)

Q)| =

Fe

p(z) q(z) f(2)
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Normalized Importance Sampling @ P

e C(Correctness: P(x) = P'(x) \
a

1 P'(x)
Ep(f(x)) = ff(x)P(x)dx = Eff(x) 000 Q(x)dx

------ P'®)
----- Q)

[reoQ@dxy | reewax

LS
M—= > rm

whrere X7t —Q Cax D

Tm

Y™

= z f(x™w™ where w =
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‘Normalized Importance Sampling @ HIBRIETIRE

e Claim: Normalized importance sampling is biased.

To show this, suppose we sampled only once, that is, M = 1:
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Bias: Unnormalized importance sampling is unbiased, but
normalized importance sampling is biased.

Variance: in practice, the variance of the estimator in the
unnormalized case is usually higher than that in the
normalized case.

Requiremet : Unnormalized importance sampling need to
calculate P(x), however, it is common to have
P’(x) available instead of P(x).
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Drawback of Importance Sampling @ e

e The success of this approach depends crucially on

how well the sampling distribution Q(x) matches the
desired distribution P(x). As is often the case, P(x)f (x)
is strongly varying and has a significant proportion of its
mass concentrated over relatively small regions of x
space, then the set of importance weights may be

dominated by a few weights having large values, with
the remaining weights being relatively insignificant.

Thus the effective sample size can be much smaller
than the apparent sample size M.
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Likelihood Weighting @ SURISIRSIINE

e Normalized importance sampling is applied in the Bayes net.

» The proposal distribution Q (x) (suppose we have gotten the
evidence e = {I =il and G = g*}):

P(D,S,L,e
d | d i & « DefibeS,Lle) =™ (,(PP tc)be the
06 | 04 density of the mutilatedGetwork.
But sometimes it’s difficult to
oy © Bl - T sothat
P(x,e) P'(x)

-' P(xle) =5 = Pl

 Based on the idea of normalized

0 1 0 m : .
._ i% 095 | 0.05 importance sampling, compute:
it o2 |08 M "
P o ~ 2 A MTr(x™)
gl o1 |09 P(X; = x;le) = M -
g2 04 |06 Zmzlr(x )
2?1099 | 0.01 P'(xm)

Figure 2: the mutilated(% /7 Et) network where r(x™) = Py, (x™)
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- P'(xm) \ ’ Data Mining Lab
e how to calculate r(x™) = D) ?

06 | 04 / 0 1
- Difficulty

>

sU | st
o & 8 Leiter
i 1095 | 0.05
il o2 |08

PP

1101 [oo

‘gj ghlo1 |09
22|04 |06 - :
| 099 001 g 104 |06

23] 099 | 0.01

Figure 3: the original network Figure 4: the mutilated network
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[ ———— ] reEEmm——— 1
T CxeTTE D — gy Cxm > o, ll:x’n) |
e e e I T J
I CIED, T, €7, S, D — IO P CID P I, D P CS LDl D L£PCLED, S, LD =— ST CEIDIPCS N LDECL | D
ThUS CxTTD — P CID>FPCG . 7D
Algorithm 12.2 Likelihood-weighted particle generation ) LW indicates that the
Procedure LW-Sample ( weights of different samples
B, I/ Bayesian network over X a . d f th -
Z = z |l Event in the network a.re .eI'IVE rom e
) likelihood of the evidence
; i_L_el X _1_111 ., X,, be a topological ordering of X’ accumulated throughout the
w — .
3 Tori=l,...n sampling process.
4 u; — x(Pax,) /I Assignment to Pay, in z1,...,2i—1
s uxgzom IR AR TR
ample z; from i | w; N v NS
- Mo IEFE H ERR IR 3 R RLOR
8 r; — 2z(X;) Il Assignment to X; in z
9 |’L£_<—_t_ﬂ_-_fi(_3:i I_u_:)_: /I Multiply weight by probability of desired value
10 return (z1,...,%,), W
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03 MCMC
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MCMC(Markov Chain Monte Carlo) @ WESETRE

e Intuition:

* Instead of Q(x), we use Q(x’|x) where x’ is the new state being sampled,
and x is the previous sample.

» As x changes, Q(x’|x) can also change(as a function of x’).

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(x'|x)
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e Metropolis-Hastings(MH) Algorithm:
1. Initialize the starting state x() at t =0.

2. Draws a sample x’ from the proposal Q (x'|x(?). Note that this proposal
is now a function of the previously drawn sample x(*) (at time step t).

3. Thenew sample x’ is accepted with the probability:

P(x")Q(x®|x") \
P(x®)Q(x’ |x<t>)

4. Repeatsteps?2 and 3 until the samples “converge”.

Q(x'|x™)

ID |O A(x'|x1)

reject accept
| I | >
0 t t+1

A(x'|x®) = min(1,
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* Note that because P is in both the numerator and denominator, we
can use the unnormalized P’ and there is no need to find the partition
function «.

« The acceptance probability A(x'|x(®) is like a ratio of importance
sampling weights. P(x")/Q(x’|x®) is the importance weight for x,
P(x®)/Q(x®]x") is the importance weight for x(). So it just like that
We divide the importance weight for x’ by that of x.

P(x")Q(x®|x")
P(x®)Q(x’|x®)

A(x'|x®) = min(1, )

P(x)
QUpe) Qi)

Q(|x")
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* An example:

* Let Q(x’|x) be a Gaussian centered on x

» We're trying to sample from a bimodal distribution P (x)

Weerajtaq tree aosepB§al DY AQ @ @osd® us taasadie (Do (x {1 x(2)) > 1,
heedesAE P (V) is close to zero

O

® ° ® °
x(0) (D) PAC I €) x4
reject
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e MC(Markov Chain) concepts:

A Markov Chain is a sequence of random variables x (1), X (2), et
x ™ with the Markov Property:

PP CoeCT2D? —— o A CRED | s C=D . L e CTE— AD Sy ——  rm e CTE? —— o e T A )
* x(@ isthe i-th sample of all variables in a graphical model.

- x® represents the entire state of the graphical model at time i.

P Coc (7D —— o C7r aD )

. is known as the transition kernel.

* The next state depends only on the preceding state.
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*  We study homogeneous Markov Chains, in which the
transition kernel ~ is fixed with time:

 For convenience, we call the kernel T'(x’|x), where x is the previous
state and x’ is the next state.

* When dealing with MCs, we don’t think of the system as
being in one state, but as having a distribution over states.

)

is a distribution over

* Probability distributions over states: ”
the state of the model, at time t.
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 Transitions: recall that states transition from x ®) to x(¢+1

according to the transition kernel T'(x’|x). We can also transition
entire distributions:

I = Z 1 (x) T(x'|x) for all x’
X

 Stationary distributions: is stationary if it does not change
under the transition kernel:

I(x") = an (xX)T (x'|x) for all x’
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 Stationary distributions are of great importance in MCMC. To
understand them, we need to define some notions:

« Irreducible(4 1] £J): an MC is irreducible if you can get from any
state x to any other state x” with probability > 0 in a finite number of

steps.

« Aperiodic(dFJ#H H): an MC is aperiodicif you can return to any state
x at any time.

 Ergodic(#)/7): an MC is ergodic if it is irreducible and aperiodic.

« Ergodicity is important: it implies you can reach the stationary
distribution "= , no matter the initial distribution ™

2 Cx )
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 Reversible(R]1¥)/Detailed balance(41Z11-#%): an MC is reversible

if there exists a distribution such that the detailed balance condition

is satisfied:

FZ Coxx" DT Coclox™Dd =— FT CoxDT Cox’ oD

* Reversibility guarantees to have a Stationary distribution:

TFCox" DT Coclox™D — FZ CxDT Coxx | 2D

Zxﬂ(x’)T(x|x’) — Zxﬂ(x)T(x’lx)
) ZxT(x|x’) - Zxﬂ(x)T(x’|x)
(x') = Zxﬂ(x)T(x’pc)
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e Back to MH algorithm

* The proposal Q(x’|x) keeps changing with the value of x; how do
we know the samples will eventually come from P (x)?

* Recall that we draw a sample x’ according to Q(x’|x), and then
accept/reject according to A(x’|x).

Thus here the transition kernel is

T CaxT oD — Q7D AcCkT D

* We can prove that MH algorithm satisfies detailed balance:

P(xr)Q(xlxr))
P(x)Q(x7|x)

 Recall that A(x'|x) = min(1,

* This implies that:

. , P(x)Q(x!]|x) ' _
if A(x'|x) <1, then PO > 1and thus A(x'|x) =1
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* Now suppose A(x'|x) < 1 and A(x|x") = 1, we have:

_ P(x)Q(x|x)

A(x'|x)

- P()Q(|x)
PO)Q(X AR ) = P(x)Q(x|x) - 1

The structure of
A(x'|x) is derived
from this line!

I CoxDDT Coxx’ oDy = FPPPCx" DT Coalaxx™D

e The last line is the detailed balance condition.

* Thus, the MH algorithm eventually converges to the target
distribution P (x)!
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e In the high dimension level, the acceptance rate in MH is still
not high enough, so can we find a transition matrix to directly
make the acceptance rate A(x'|x) =17

e Gibbs sampling is a special case of the MH method where the
proposal distributions are tractable conditional distributions
on P(x), which can achieve the above goal.

e The idea is here:

1. Suppose in a two dimensional space, here are three points:

A
B = (x1,x;")

A = (Xq.X=D

2 = (xq4.2="D

A= (x1,x7) C=(x/,x2)

< — Coxcqa 7.2
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2. We find that:
* For points A and B

FCADFCoxcq T 1ax=D) =— FPCCOF Coxca la=D

Similarly

' BIRBIETIRE
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3. Thus we can build the transition matrix: g

~ @ CA —> B> — I Comlacad if xl(A) =x1(B) =x1

d cca - o5 — Fexaix=> 1f X2 (A) = X2 (C) = X2

L Q(A—>D) =0 otherwise

» It's easy to see that this transition
matrix satisfies the detailed balance
condition. So it will lead to the
stationary distribution.

* Gibbs sampling & > “Z BEHE IR
7 (Multiple Transition Models), &—>
WU S — MR FRAN I, A 2
PAORUE S 7R B R EE s P, (H 22 k% 0 m]
DA WS TR0 oAl o BEIRIRATTBEHLER
PR IR — M %
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e The pseudocode:

Algorithm 8 n#:Gibbs Sampling EiZ%
1: ALV {z; :i=1, - ,n}
9 WMt=0,1,2,--- fEFEH

. t+1 t) (¢ ¢
1 2 (a2, 20, 2 )
9 J:E;—é—l} WP(IQII;H”-I?: - ,IE])
3.
(¢+1) (£+1) (t+1) _(¢) ()
4. z; ~ p(zj|z; ST MRS ML/ | )

i

(t+1)

6. IE_:” ~ p(Zn|z; ,I-E? s fIEHl])

n—1




Gibbs Sampling i HIBRIEEIRE
\ ’ Data Mining Lab

o We will show the Gibbs sampling is a particular case of MH
method, whose acceptance rate is 1.

« Define x; to be the i-th element of the feature vector x and x_;
to be all other elements. Gibbs sampling let

QCxIlxD — QCoxz . x_zloxz. x> — F Coxxzg lx_zD

e Then
P(x{,x_)Q(x;, x—i|x;’, x_;)
"P(x;,x_)QCx; x| xy,x_;)

P(x], x_;)P(xi|x_;)
" P(xy, x—i)P(xflx—i))

)

A(x;',x_i|x;, x_;) = min(1

= min(1

P(xi|x_))P(x_))P(xi|x_;)
P (xi|x_)P(x_;)P(x{|x_;)

)

= min(1,

= min(1,1) =1



Problems of MCMC r.' b P TRTMU

‘ \ ’ Data Mining Lab I
e It can be hard to move from one high probability space to
another across a low probability space.

e The samples are not independent with each other truly,
especially in Gibbs sampling. How to determine how two
samples are “far enough” to be considered independent draws.

e Although MH algorithm will converge to the true distribution,
with certain exceptions, there are no guarantees to when. In fact,
it'’s an art to decide when to stop the algorithm.
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e The collapsed particles(3 L5 1R T).

e Deterministic Search Methods(fffi & £ & 771%).
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