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Ø当局者迷，旁观者清。——《旧唐书》
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ü Motivation
ü Some Basic Methods
    1. Naive Sampling/Forward Sampling
     2. Rejection Sampling
     3. Importance Sampling
         3.1 Unnormalized Importance Sampling
         3.2 Normalized Importance Sampling

3.2.1 Likelihood Weighting

ü MCMC(Markov Chain Monte Carlo)
    1. MCMC
     2. Gibbs Sampling
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l  Representation, Learning , Inference

Describe our world!

Inference: response to queries (what                       
                we want to 

know)
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From a high level, it appears that sampling methods are the 
ultimate general-purpose inference algorithm. They are the 
only method that can be applied to arbitrary probabilistic 
models and that is guaranteed to achieve the correct results at 
the large sample limit. 
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• We draw samples                 from f(z) i.i.d. 

In most case, we want to find

And we set  

l How to sample?
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• Hoeffding bound:

l Why sampling work?
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• Method(Transformation technique): 

l Common transformation:
Target: generate random numbers from simple nonuniform 

distribution.
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draw samples from exponential distribution

• One example:
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• The process continues similarly 
for S and L.

l In the BN:
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l The problems:

• For a model with hundreds or more variables, rare events will 
be very hard to gain enough samples even after a long time for 
sampling.

• Apply (at least in their simple form) only to Bayesian networks, 
in undirected models, even generating a sample from the prior
distribution is a difficult task.

P(J|B1)=P(J,B1)/P(B1)

can not defined
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l Suppose we wish to sample from :

• It’s common that             is difficult to sample or even to compute, 
But             is easy to evaluate.             is often called the target 
distribution.

• Sample from a simple distribution            , known as the
proposal distribution.
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l Three steps for each sample:
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• Correctness: 
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• Drawbacks: 

• In low dimensions, the shape of                and              need to be 
similar with each other, otherwise we will reject lots of samples. 

• In high dimensions, even if the shapes of these two distributions 
are similar, the rejection rate is really high.(leave out the proof)
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• Sample                      for m = 1, 2, 3, …, M 

• Compute
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l Claim:      is an unbiased estimator of                 :
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l Suppose we can only evaluate                           for some 
unknown scaling factor            .(e.g. for an MRF) 

l We can eliminate the nasty normalization constant       
as follows:

• Let  
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l The procedure to compute E(f(x)) is:

• Compute scaling factor estimator 

• Sample                      for m = 1, 2, 3, …, M 

• Compute
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l Correctness:
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l Claim: Normalized importance sampling is biased.

To show this, suppose we sampled only once, that is, M = 1:
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l Bias: Unnormalized importance sampling is unbiased, but 
normalized importance sampling is biased.

l Variance: in practice, the variance of the estimator in the 
unnormalized case is usually higher than that in the 
normalized case.
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l Normalized importance sampling is applied in the Bayes net.

Figure 2: the mutilated(多片段) network

• Define                               to be the
density of the mutilated network.

• Based on the idea of normalized 
importance sampling, compute:

• Define                                so that 

where

But sometimes it’s difficult to 
evaluate           .
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l how to calculate                              ?

Figure 3: the original network Figure 4: the mutilated network
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Thus  

LW indicates that the 
weights of different samples 
are derived from the 
likelihood of the evidence 
accumulated throughout the 
sampling process.

不同样本的权重来自于采样
过程中累积的证据的似然
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l Intuition:
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l Metropolis-Hastings(MH) Algorithm:
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• An example:

reject
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l MC(Markov Chain) concepts:

•                                   is known as the transition kernel.

• The next state depends only on the preceding state.



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室MCMC

• We study homogeneous Markov Chains, in which the
transition kernel                                  is fixed with time:

• When dealing with MCs, we don’t think of the system as
being in one state, but as having a distribution over states.
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• Stationary distributions: is stationary if it does not change 
under the transition kernel:
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• Stationary distributions are of great importance in MCMC. To
understand them, we need to define some notions:

• Ergodic(遍历): an MC is ergodic if it is irreducible and aperiodic.

• Ergodicity is important: it implies you can reach the stationary 
distribution             , no matter the initial distribution              .



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室MCMC

• Reversible(可逆)/Detailed balance(细致平稳): an MC is reversible 
if there exists a distribution such that the detailed balance condition 
is satisfied:

• Reversibility guarantees to have a Stationary distribution:    
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l Back to MH algorithm

Thus here the transition kernel is

• Recall that

• We can prove that MH algorithm satisfies detailed balance:

• This implies that:



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室MCMC

• The last line is the detailed balance condition.
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• The idea is here:

1. Suppose in a two dimensional space, here are three points:
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2. We find that:

• For points A and B

Similarly
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3. Thus we can build the transition matrix:

if

if

otherwise

• It’s easy to see that this transition 
matrix satisfies the detailed balance 
condition. So it will lead to the 
stationary distribution.

• Gibbs sampling 是一个“多重转移模
型”(Multiple Transition Models), 每一个
核就是延一个坐标轴的转移，单个核不足
以保证马尔科夫链的遍历性，但多核则可
以使其收敛于稳定分布。每次我们随机或
轮转选择其中一个核。
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l The pseudocode：
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l We will show the Gibbs sampling is a particular case of MH 
method, whose acceptance rate is 1.

• Then
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l Although MH algorithm will converge to the true distribution, 
with certain exceptions, there are no guarantees to when. In fact, 
it’s an art to decide when to stop the algorithm.

l It can be hard to move from one high probability space to 
another across a low probability space.

l The samples are not independent with each other truly, 
especially in Gibbs sampling. How to determine how two 
samples are “far enough” to be considered independent draws.

l …....
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l The collapsed particles(坍塌的粒子).

l Deterministic Search Methods(确定性搜索方法). 
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