

Information Diffusion and External Influence in Networks

Reporter: Zhongjing Yu

Data Mining Lab, Big Data Research Center, UESTC

Email: junmshao@uestc.edu.cn

http://staff.uestc.edu.cn/shaojunming

Outline:

- ➤ Background and Motivation
- **≻**Model
 - Proposed Model
 - Infer parameters
- > Experiments
- **≻**Conclusion

数据挖掘实验室 Data Mining Lab

Background:

Social network: a role in the <u>diffusion</u> of the information(Fig.1).

Application: recommend system(Fig.2), viral transmission,...

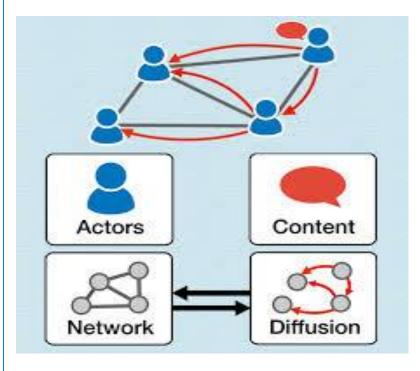


Fig.1

Fig.2

Background:

数据挖掘实验室

Data Mining Lab

Message pass:

- From a node to another via edges (mostly)
- Through the influence of external sources.

型 Da

数据挖掘实验室 Data Mining Lab

Motivation

Study the process of information diffusion

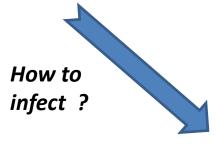
From a node to another via edges (mostly)

Through the influence of external sources.

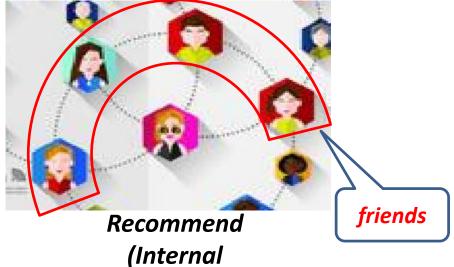
Model (target)

Motivation

Advertisement (External exposures)



Buy balabala (infection)

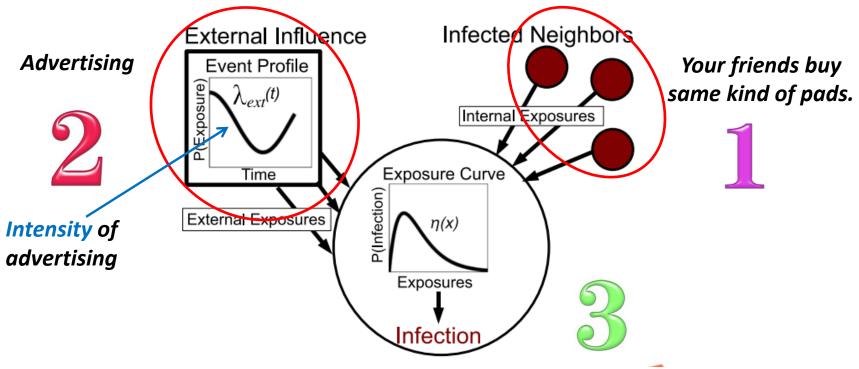


How to infect ?

Exposures)

数据挖掘实验室 Data Mining Lab

Detail:



Your ability of resisting temptation

Key points:

- External Influence and Infected Neighbors both *develop exposures*.
- A node is infected with *different probability* according to the number of exposures.

Proposed Model(Exposures)

Internal Exposures (introduce a function):

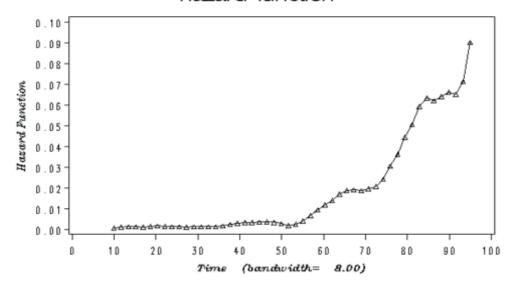
Hazard function : describe a *distribution* of the *length of time* it takes for an event to occur.

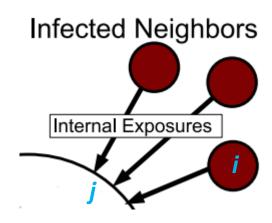
 $h(t) = \frac{N(t)}{M(t)}$

N(t): the number of people with **infection** at t.

M(t): the number of people with **no infected** at t.

hazard function





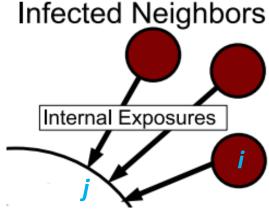
Proposed Model(Exposures)

 λ_{int} : internal *hazard* function

 $\lambda_{int}(t) dt \equiv P (i \text{ exposes } j \in [t, t + dt) | i \text{ hasn't exposed } j \text{ yet})$

 λ_{int} : *function of the frequency* with which nodes *check-up* on each other.

t: the amount of time that has passed since node i was infected.



Proposed Model(Exposures)

Excepted number of *internal* exposures:

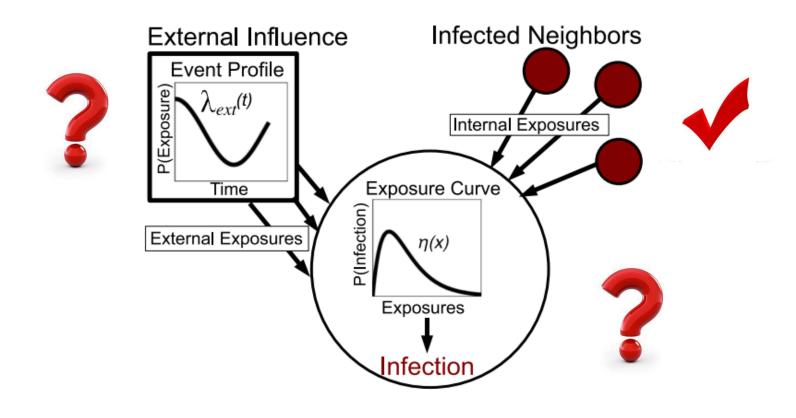
Node i has received by t:

$$\Lambda_{int}^{(i)}(t) = \sum_{j;j \text{ is } i\text{'s inf. neighbor}} P(j \text{ exposed } i \text{ before } t)$$

$$= \sum_{j;j \text{ is } i\text{'s inf. neighbor}} \left[1 - \exp\left(-\int_{\tau_j}^t \lambda_{int}(s - \tau_j) ds\right) \right]$$

where τ_i is the *infection time* of node j

Proposed Model(Exposures)



Proposed Model(Exposures)

External exposures:

 $\lambda_{ext}(t)$: the source various in intensity over time called *event profile*.

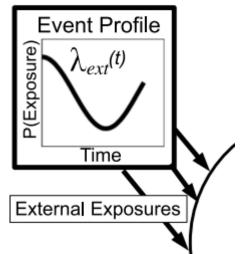
$$\lambda_{ext}(t) dt \equiv P(i \text{ receives exposure } \in [t, t + dt))$$

The probability:

(receive *n* external exposures within $T \cdot \Delta t$)

$$P_{exp}(n; T \cdot \Delta t) = {T \choose n} (\lambda_{ext} \cdot \Delta t)^n \cdot (1 - \lambda_{ext} \cdot \Delta t)^{T-n}$$

External Influence



Proposed Model(Exposures)

The *probability*:

(receive *n* external exposures within $T \cdot \Delta t$)

$$P_{exp}^{(i)}(n;t) \approx \binom{t/dt}{n} \left(\frac{\Lambda_{ext}(t)}{t} \cdot dt\right)^n \cdot \left(1 - \frac{\Lambda_{ext}(t)}{t} \cdot dt\right)^{t/dt - n}$$

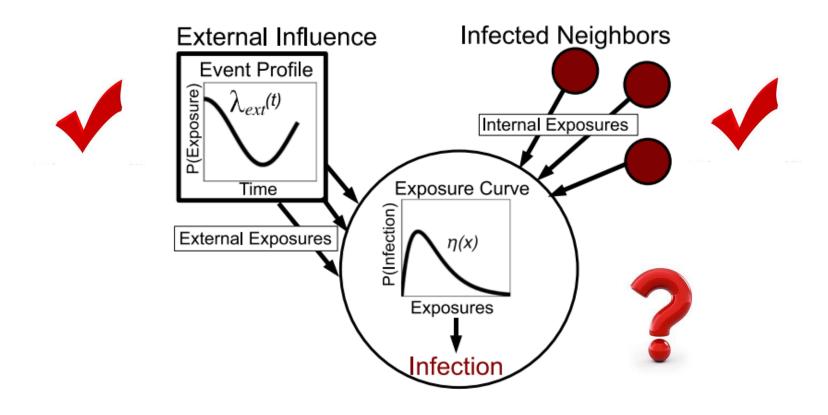
where $\Lambda_{ext}(t) \equiv \int_0^t \lambda_{ext}(s) ds$ (average) $\lambda_{ext}(t) + \lambda_{int}^{(i)}(t)$

$$\lambda_{ext}(t) + \lambda_{int}^{(i)}(t)$$

$$P_{exp}^{(i)}(n;t) \approx \binom{t/dt}{n} \left(\frac{\Lambda_{int}^{(i)}(t) + \Lambda_{ext}(t)}{t} \cdot dt \right)^{n} \times \left(1 - \frac{\Lambda_{int}^{(i)}(t) + \Lambda_{ext}(t)}{t} \cdot dt \right)^{t/dt - n}$$

Exposures = internal exposures + external exposures

Proposed Model(Exposures)



Proposed Model(infection)

Exposure curve:

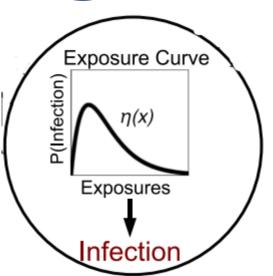
$$\eta(x) \equiv$$

 $P(\text{node } i \text{ is infected immediately after } x^{th} \text{ exposure})$

How to define the exposure curve?

Some properties:

- ➤ No exposure, no infection.
- *▶* Only one max infection rate.
- >Two factors:
- Measure of how infectious a contagion.
- Measure of the contagion's enduring relevancy.

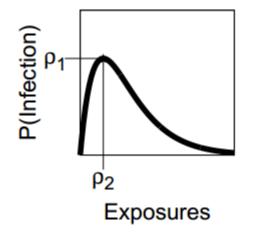


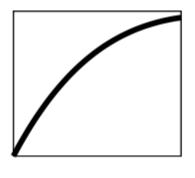
Proposed Model(infection)

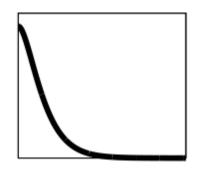
Exposure curve:

$$\eta(x) = \frac{\rho_1}{\rho_2} \cdot x \cdot \exp\left(1 - \frac{x}{\rho_2}\right).$$

- Measure of how infectious a contagion---- ρ_1
- Measure of the contagion's enduring relevancy---- ho_2







Proposed Model(from exposures to infections)

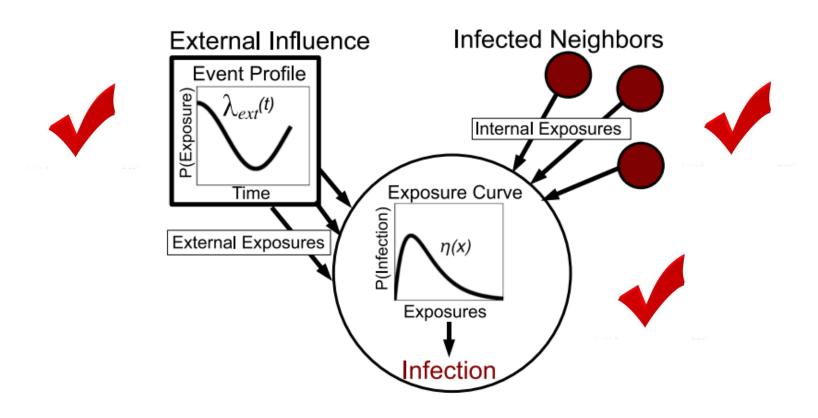
Construct the probability functions:

Idea: The probability of how long time between node i influenced(τ_i) and have infected (t).

$$F^{(i)}(t) \equiv P(\tau_i \le t) \approx P_{\rm exp}^{(i)}(n;t)$$

$$F^{(i)}(t) = \sum_{n=1}^{\infty} P[i \text{ has } n \text{ exp. }] \times P[i \text{ inf. } | i \text{ has } n \text{ exp. }]$$

$$= \sum_{n=1}^{\infty} P_{exp}^{(i)}(n;t) \times \left[1 - \prod_{k=1}^{n} [1 - \eta(k)]\right].$$



Finish model, any questions?

Infer parameters

Given:

- **≻**Network
- The *infection times* for each node

Infer parameters:

- Event profile $\lambda_{ext}(t)$
- \triangleright Parameters of $\eta(x)$: ρ_1 , ρ_2 .

Idea:

>when the exposures curve is known.

 \longrightarrow infer the event profile $\lambda_{ext}(t)$

>when the event profile is known

 \implies infer the exposures curve $\eta(x)$

Infer parameters $(\lambda_{ext}(t))$

Assume: given

S(t): the number of nodes with uninfected at t.

$$\frac{S(t_k)}{S(t_k)} = \sum_{i=1}^{N} P(\text{ node } i \text{ not infected by time } t)$$

$$= \sum_{i=1}^{N} \sum_{n=1}^{\infty} P_{exp}^{(i)}(n; t_k) \prod_{k=1}^{n} [1 - \eta(k)]$$

$$\approx \cdots$$

$$\approx \sum_{i} \exp\left(-\int_{0}^{\underline{\Lambda_{k}} + \Lambda_{int}^{(i)}(t_{k})} \underline{\eta(y)} dy\right)$$

$$\Lambda_k = \Lambda_{ext}(t) \equiv \int_0^t \lambda_{ext}(s) ds$$

Infer parameters ($\eta(x) - \rho_1, \rho_2$)

Assume: given Λ_{ext}

Idea: fix ρ_2 , solve for a ρ_1 according to *maximizes log-likelihood*.

$$\begin{split} F^{(i)}(t) &= \sum_{n=1}^{\infty} P[i \text{ has } n \text{ exp. }] \times P[i \text{ inf. } | i \text{ has } n \text{ exp. }] \\ &= \sum_{n=1}^{\infty} P_{exp}^{(i)}(n;t) \times \left[1 - \prod_{k=1}^{n} \left[1 - \eta(k) \right] \right]. \end{split}$$

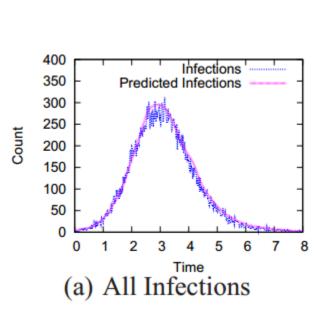
Infer parameters

Infer $\eta(x)$ through max log-likelihood

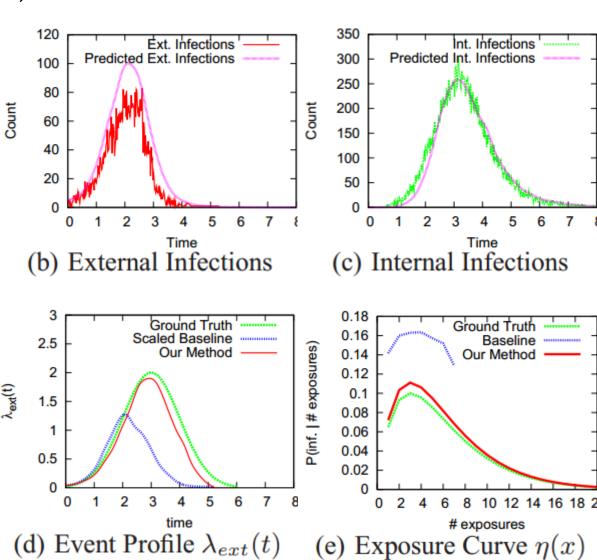
```
Algorithm 1 Model Parameter Inference
         Initialize \Lambda_{ext}(t), \rho_{final}^1, \rho_{final}^2, \mathcal{L}_{max}
         for \rho_2 = 1 \rightarrow \rho_{max} do
             Initialize \rho_1
              while not converged do
                  \rho_1 \leftarrow \text{Solution to Eq. 12 using } \rho_2, \Lambda_{ext}(t)
                  \Lambda_{ext}(t) \leftarrow \text{Solution to Eq. 10 using } \rho_1, \rho_2.
              end while
              \mathcal{L} \leftarrow Log\text{-}Likelihood(\Lambda_{ext}(t), \rho_1, \rho_2)
             if \mathcal{L} \geq \mathcal{L}_{max} then
\Lambda_{ext}(t) \leftarrow \text{Solution to Eq. 10 using } \rho_{final}^1, \rho_{final}^2.
```

Infer $\Lambda_{ext}(t)$ through $\eta(x)$ and S(t)

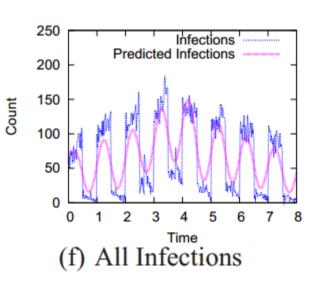
Synthetic data $(\lambda_{int}(t) = t)$



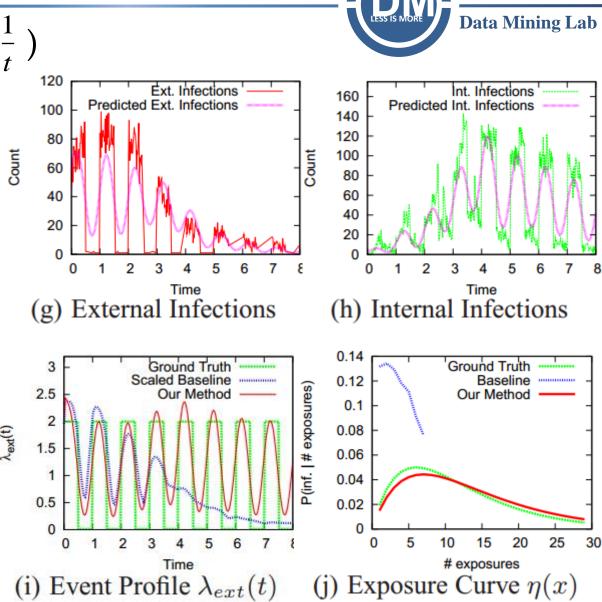
Given (a), infer (b)-(e)



Synthetic data
$$\ell_{int}(t) = \frac{1}{t}$$



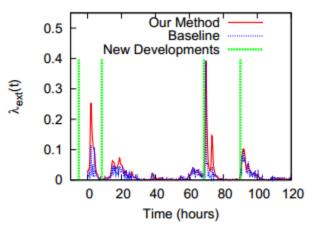
Given (f), infer (g)-(j)



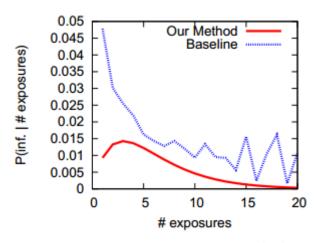
数据挖掘实验室

数据挖掘实验室 Data Mining Lab

Real data (Twitter)



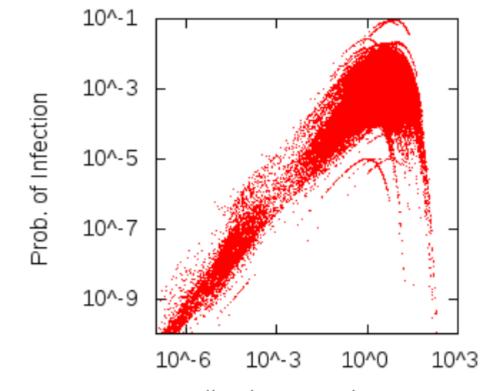
(a) Event Profile $\lambda_{ext}(t)$



(b) Exposure Curve $\eta(x)$

Figure 4: The model fitted to a single contagion representing URLs related to the Tucson, Arizona shootings. The green vertical lines designate when four distinct developments related to the shooting event occurred.

Real data (Twitter)

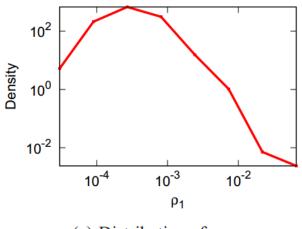


Normalized Expected Exposures

Figure 5: An aggregation of the exposure curves for each URL. Upon the infection of each user, the expected number of exposures received by the user divided by ρ_2 was plotted against inferred infection probability.

数据挖掘实验室 Data Mining Lab

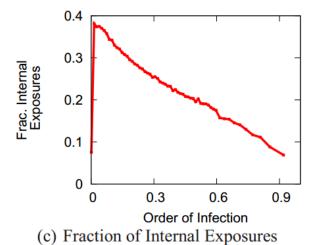
Real data



(a) Distribution of ρ_1



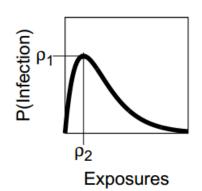
(b) Distribution of ρ_2

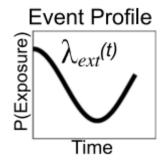


Conclusion

➤Infer the *shape* of influence functions.

➤ Capture the *external influence*.





➤ More accurate *description* of the real network diffusion process

Thanks

Chongming Gao Yingcai Experimental School gchongming@126.com